1
|
Jonas L, Lee YY, Mroz R, Hill RT, Li Y. Nannochloropsis oceanica IMET1 and its bacterial symbionts for carbon capture, utilization, and storage: biomass and calcium carbonate production under high pH and high alkalinity. Appl Environ Microbiol 2025; 91:e0013325. [PMID: 40243321 DOI: 10.1128/aem.00133-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
To combat the increasing levels of carbon dioxide (CO2) released from the combustion of fossil fuels, microalgae have emerged as a promising strategy for biological carbon capture, utilization, and storage. This study used a marine microalgal strain, Nannochloropsis oceanica IMET1, which thrives in high CO2 concentrations. A high-pH, high-alkalinity culture was designed for CO2 capture through algal biomass production as well as permanent sequestration through calcium carbonate (CaCO3) precipitation. This was accomplished by timed pH elevation and the addition of sodium bicarbonate to cultures of N. oceanica grown at lab scale (1 L) and pilot scale (500 L) with 10% and 5% CO2, respectively. Our data showed that 0.02 M NaHCO3 promoted algal growth and that sparging cultures with ambient air after 12 days raised pH and created favorable CaCO3 formation conditions. At the 1 L scale, we reached 1.52 g L-1 biomass after 12 days and an extra 9.3% CO2 was captured in the form of CaCO3 precipitates. At the 500 L pilot scale, an extra 60% CO2 was captured (Day 40) with a maximum CO2 capture rate of 63.2 g m-2 day-1 (Day 35). Bacterial communities associated with the microalgae were dominated by two novel Patescibacteria. Functional analysis revealed that genes for several plant growth-promotion traits (PGPTs) were enriched within this group. The microalgal-bacterial coculture system offers advantages for enhanced carbon mitigation through biomass production and simultaneous precipitation of recalcitrant CaCO3 for long-term CO2 storage.IMPORTANCECapturing carbon dioxide (CO2) released from fossil fuel combustion is of the utmost importance as the impacts of climate change continue to worsen. Microalgae can remove CO2 through their natural photosynthetic pathways and are additionally able to convert CO2 into a stable, recalcitrant form as calcium carbonate (CaCO3). We demonstrate that microalgae-based carbon capture systems can be greatly improved with high pH and high alkalinity by providing optimal conditions for carbonate precipitation. Our results with the microalga, Nannochloropsis oceanica strain IMET1, show an extra 9.3% CO2 captured as CaCO3 at the 1 L scale and an extra 60% CO2 captured at the 500 L (pilot) scale. Our optimized system provides a novel approach to capture CO2 through two mechanisms: (i) as organic carbon within microalgal biomass and (ii) as inorganic carbon stored permanently in the form of CaCO3.
Collapse
Affiliation(s)
- Lauren Jonas
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yi-Ying Lee
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | | | - Russell T Hill
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Yantao Li
- University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Aram L, de Haan D, Varsano N, Gilchrist JB, Heintze C, Rotkopf R, Rechav K, Elad N, Kröger N, Gal A. Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature. Nat Commun 2024; 15:7888. [PMID: 39251596 PMCID: PMC11385223 DOI: 10.1038/s41467-024-52211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
Collapse
Affiliation(s)
- Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Diede de Haan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - James B Gilchrist
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Christoph Heintze
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ron Rotkopf
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Walker JM, Greene HJM, Moazzam Y, Quinn PD, Parker JE, Langer G. An uneven distribution of strontium in the coccolithophore Scyphosphaera apsteinii revealed by nanoscale X-ray fluorescence tomography. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:966-974. [PMID: 38354057 DOI: 10.1039/d3em00509g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Coccolithophores are biogeochemically and ecologically important phytoplankton that produce a composite calcium carbonate-based exoskeleton - the coccosphere - comprised of individual platelets, known as coccoliths. Coccoliths are stunning examples of biomineralization; their formation featuring exceptional control over both biomineral chemistry and shape. Understanding how coccoliths are formed requires information about minor element distribution and chemical environment. Here, the first high-resolution 3D synchrotron X-ray fluorescence (XRF) mapping of a coccolith is presented, showing that the lopadoliths of Scyphosphaera apsteinii display stripes of different Sr concentration. The presence of Sr stripes is unaffected by elevated Sr in the culture medium, macro-nutrient concentration, and light intensity, indicating that the observed stripiness is an expression of the fundamental coccolith formation process in this species. Current Sr fractionation models, by contrast, predict an even Sr distribution and will have to be modified to account for this stripiness. Additionally, nano-XANES analyses show that Sr resides in a Ca site in the calcite lattice in both high and low Sr stripes, confirming a central assumption of current Sr fractionation models.
Collapse
Affiliation(s)
- Jessica M Walker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| | - Hallam J M Greene
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Yousef Moazzam
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| | - Paul D Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| | - Julia E Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Triccas A, Laidlaw F, Singleton MR, Nudelman F. Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica. J Struct Biol 2024; 216:108066. [PMID: 38350555 DOI: 10.1016/j.jsb.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore Gephyrocapsa oceanica by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.
Collapse
Affiliation(s)
- Alexander Triccas
- EaSTCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Fraser Laidlaw
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Martin R Singleton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fabio Nudelman
- EaSTCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
5
|
Avrahami EM, Eyal Z, Varsano N, Zagoriy I, Mahamid J, Gal A. Transport-Limited Growth of Coccolith Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309547. [PMID: 38088507 DOI: 10.1002/adma.202309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Indexed: 12/22/2023]
Abstract
Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures. Here, a suite of state-of-the-art electron microscopies is used to follow both the growth trajectories of the crystals ex situ, and the cellular environment in situ, in the species Emiliania huxleyi. It is shown that crystal growth alternates between a space filling and a skeletonized growth mode, where the crystals elongate via their stable crystallographic facets, but the final morphology is a manifestation of growth arrest. This process is reminiscent of the balance between reaction-limited and transport-limited growth regimes underlying snowflake formation. It is suggested that localized ion transport regulates the kinetic instabilities that are required for transport-limited growth, leading to reproducible morphologies.
Collapse
Affiliation(s)
- Emanuel M Avrahami
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Zohar Eyal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Wheeler GL, Sturm D, Langer G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. JOURNAL OF PHYCOLOGY 2023; 59:1123-1129. [PMID: 37983837 DOI: 10.1111/jpy.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Coccolithophores are the most abundant calcifying organisms in modern oceans and are important primary producers in many marine ecosystems. Their ability to generate a cellular covering of calcium carbonate plates (coccoliths) plays a major role in marine biogeochemistry and the global carbon cycle. Coccolithophores also play an important role in sulfur cycling through the production of the climate-active gas dimethyl sulfide. The primary model organism for coccolithophore research is Emiliania huxleyi, now named Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying coastal and oceanic environments across the globe, and is the most abundant coccolithophore in modern oceans. Research in G. huxleyi has identified many aspects of coccolithophore biology, from cell biology to ecological interactions. In this perspective, we summarize the key advances made using G. huxleyi and examine the emerging tools for research in this model organism. We discuss the key steps that need to be taken by the research community to advance G. huxleyi as a model organism and the suitability of other species as models for specific aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Glen L Wheeler
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Daniela Sturm
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Skeffington A, Fischer A, Sviben S, Brzezinka M, Górka M, Bertinetti L, Woehle C, Huettel B, Graf A, Scheffel A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat Commun 2023; 14:3749. [PMID: 37353496 PMCID: PMC10290126 DOI: 10.1038/s41467-023-39336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Alastair Skeffington
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Axel Fischer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Magdalena Brzezinka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michał Górka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Christian Woehle
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Alexander Graf
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Technische Universität Dresden, Faculty of Biology, 01307, Dresden, Germany.
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
8
|
Langer G, Probert I, Cox MB, Taylor A, Harper GM, Brownlee C, Wheeler G. The Effect of cytoskeleton inhibitors on coccolith morphology in Coccolithus braarudii and Scyphosphaera apsteinii. JOURNAL OF PHYCOLOGY 2023; 59:87-96. [PMID: 36380706 DOI: 10.1111/jpy.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/20/2022] [Indexed: 05/24/2023]
Abstract
The calcite platelets of coccolithophores (Haptophyta), the coccoliths, are among the most elaborate biomineral structures. How these unicellular algae accomplish the complex morphogenesis of coccoliths is still largely unknown. It has long been proposed that the cytoskeleton plays a central role in shaping the growing coccoliths. Previous studies have indicated that disruption of the microtubule network led to defects in coccolith morphogenesis in Emiliania huxleyi and Coccolithus braarudii. Disruption of the actin network also led to defects in coccolith morphology in E. huxleyi, but its impact on coccolith morphology in C. braarudii was unclear, as coccolith secretion was largely inhibited under the conditions used. A more detailed examination of the role of actin and microtubule networks is therefore required to address the wider role of the cytoskeleton in coccolith morphogenesis. In this study, we have examined coccolith morphology in C. braarudii and Scyphosphaera apsteinii following treatment with the microtubule inhibitors vinblastine and colchicine (S. apsteinii only) and the actin inhibitor cytochalasin B. We found that all cytoskeleton inhibitors induced coccolith malformations, strongly suggesting that both microtubules and actin filaments are instrumental in morphogenesis. By demonstrating the requirement for the microtubule and actin networks in coccolith morphogenesis in diverse species, our results suggest that both of these cytoskeletal elements are likely to play conserved roles in defining coccolith morphology.
Collapse
Affiliation(s)
- Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Ian Probert
- Station Biologique de Roscoff, 29680, Roscoff, France
| | - Madison B Cox
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403-591, USA
| | - Alison Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403-591, USA
| | - Glenn M Harper
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - Glen Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
9
|
Pierro A, Bonucci A, Normanno D, Ansaldi M, Pilet E, Ouari O, Guigliarelli B, Etienne E, Gerbaud G, Magalon A, Belle V, Mileo E. Probing the Structural Dynamics of a Bacterial Chaperone in Its Native Environment by Nitroxide‐Based EPR Spectroscopy. Chemistry 2022; 28:e202202249. [DOI: 10.1002/chem.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
- Department of Chemistry University of Konstanz, and Konstanz Research School Chemical Biology 78457 Konstanz Germany
| | - Alessio Bonucci
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Davide Normanno
- Aix Marseille Univ CNRS, Inserm Institut Paoli-Calmettes, CRCM Centre de Recherche en Cancérologie de Marseille 13273 Marseille France
- Univ Montpellier CNRS, IGH Institut de Génétique Humaine 34396 Montpellier France
| | - Mireille Ansaldi
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Eric Pilet
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ CNRS, ICR Institut de Chimie Radicalaire 13397 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Emilien Etienne
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Guillaume Gerbaud
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Axel Magalon
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| |
Collapse
|
10
|
Varsano N, Wolf SG. Electron microscopy of cellular ultrastructure in three dimensions. Curr Opin Struct Biol 2022; 76:102444. [PMID: 36041268 DOI: 10.1016/j.sbi.2022.102444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Electron microscopy in three dimensions (3D) of cells and tissues can be essential for understanding the ultrastructural aspects of biological processes. The quest for 3D information reveals challenges at many stages of the workflow, from sample preparation, to imaging, data analysis and segmentation. Here, we outline several available methods, including volume SEM imaging, cryo-TEM and cryo-STEM tomography, each one occupying a different domain in the basic tradeoff between field-of-view and resolution. We discuss the considerations for choosing a suitable method depending on research needs and highlight recent developments that are essential for making 3D volume imaging of cells and tissues a standard tool for cellular and structural biologists.
Collapse
Affiliation(s)
- Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel
| | - Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel.
| |
Collapse
|
11
|
Eyal Z, Krounbi L, Joseph OB, Avrahami EM, Pinkas I, Peled-Zehavi H, Gal A. The variability in the structural and functional properties of coccolith base plates. Acta Biomater 2022; 148:336-344. [PMID: 35738389 DOI: 10.1016/j.actbio.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Biomineralization processes exert varying levels of control over crystallization, ranging from poorly ordered polycrystalline arrays to intricately shaped single crystals. Coccoliths, calcified scales formed by unicellular algae, are a model for a highly controlled crystallization process. The coccolith crystals nucleate next to an organic oval structure that was termed the base plate, leading to the assumption that the base plate is responsible for the oriented nucleation of the crystals via stereochemical interactions. In recent years, several works focusing on a well-characterized model species demonstrated a fundamental role for indirect interactions that facilitate coccolith crystallization. Here, we develop the tools to extract the base plates from five different species, giving the opportunity to systematically explore the relations between base plate and coccolith properties. We used multiple imaging techniques to evaluate the structural and chemical features of the base plates under native hydrated conditions. The results show a wide range of properties, overlaid on a common rudimentary scaffold that lacks any detectable structural or chemical motifs that can explain direct nucleation control. This work emphasizes that it is the combination between the base plate and the chemical environment inside the cell that cooperatively facilitate the exquisite control over the crystallization process. STATEMENT OF SIGNIFICANCE: : Biological organic scaffolds can serve as functional surfaces that guide the formation of inorganic materials. However, in many cases the specific interactions that facilitate such tight regulation are complex and not fully understood. In this work, we elucidate the architecture of such model biological template, an organic scale that directs the assembly of exquisite crystalline arrays of marine microalgae. By using cryo electron microscopy, we reveal the native state organization of these scales from several species. The observed similarities and differences allow us to propose that the chemical microenvironment, rather than stereochemical matching, is the pivotal regulator of the process.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leilah Krounbi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oz Ben Joseph
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emanuel M Avrahami
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
12
|
Avrahami EM, Houben L, Aram L, Gal A. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 2022; 376:312-316. [PMID: 35420932 DOI: 10.1126/science.abm1748] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Directing crystal growth into complex morphologies is challenging, as crystals tend to adopt thermodynamically stable morphologies. However, many organisms form crystals with intricate morphologies, as exemplified by coccoliths, microscopic calcite crystal arrays produced by unicellular algae. The complex morphologies of the coccolith crystals were hypothesized to materialize from numerous crystallographic facets, stabilized by fine-tuned interactions between organic molecules and the growing crystals. Using electron tomography, we examined multiple stages of coccolith development in three dimensions. We found that the crystals express only one set of symmetry-related crystallographic facets, which grow differentially to yield highly anisotropic shapes. Morphological chirality arises from positioning the crystals along specific edges of these same facets. Our findings suggest that growth rate manipulations are sufficient to yield complex crystalline morphologies.
Collapse
Affiliation(s)
- Emanuel M Avrahami
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
14
|
Abstract
Biomineralization in a starfish displays morphologically complex features.
Collapse
Affiliation(s)
- Stephen T Hyde
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
Kahil K, Weiner S, Addadi L, Gal A. Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. J Am Chem Soc 2021; 143:21100-21112. [PMID: 34881565 PMCID: PMC8704196 DOI: 10.1021/jacs.1c09174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Minerals are formed by organisms in all of the kingdoms of life. Mineral formation pathways all involve uptake of ions from the environment, transport of ions by cells, sometimes temporary storage, and ultimately deposition in or outside of the cells. Even though the details of how all this is achieved vary enormously, all pathways need to respect both the chemical limitations of ion manipulation, as well as the many "housekeeping" roles of ions in cell functioning. Here we provide a chemical perspective on the biological pathways of biomineralization. Our approach is to compare and contrast the ion pathways involving calcium, phosphate, and carbonate in three very different organisms: the enormously abundant unicellular marine coccolithophores, the well investigated sea urchin larval model for single crystal formation, and the complex pathways used by vertebrates to form their bones. The comparison highlights both common and unique processes. Significantly, phosphate is involved in regulating calcium carbonate deposition and carbonate is involved in regulating calcium phosphate deposition. One often overlooked commonality is that, from uptake to deposition, the solutions involved are usually supersaturated. This therefore requires not only avoiding mineral deposition where it is not needed but also exploiting this saturated state to produce unstable mineral precursors that can be conveniently stored, redissolved, and manipulated into diverse shapes and upon deposition transformed into more ordered and hence often functional final deposits.
Collapse
Affiliation(s)
- Keren Kahil
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Steve Weiner
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lia Addadi
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Gal
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|