1
|
Di L, Chen M, Han Y, Guo S, Gong X, Ye S, Zhu C. Rational design of terminal deoxynucleotidyl transferase for RNA primer elongation. Int J Biol Macromol 2025; 309:142712. [PMID: 40174852 DOI: 10.1016/j.ijbiomac.2025.142712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
The short synthetic oligonucleotides have laid foundations for modern digital biology, biomaterial, and new therapeutics. However, our abilities to synthesize arbitrary sequences of oligonucleotides were stifled by the decades old phosphoramidite chemistry. The template-independent polymerase, Terminal Deoxynucleotidyl Transferase (TdT), is central to de novo enzymatic DNA synthesis through extensive engineering at the substrate binding site, yet the engineered TdT remained inaccessible to the majority of RNA primers. Here we rationally engineered the primer recognition site of TdT for RNA-primed polymerization. We demonstrated the elevation of RNA elongation activity from 20 % to >90 % on a diverse set of primers and evaluated the reaction dynamics. Pairing with the natural nucleotide substrates, the designed R-TdTs could simplify the analytical procedure for RNA sequences. We developed two proof-of-principle methods for feasible detection of trace amount of microRNAs. Combined with the versatile mutations at substrate binding pocket to accommodate nucleotide building blocks, our designed RNA-editing enzymes would become easily adaptable for a wide range of future applications in de novo synthesis of nucleic acid and synthetic biology.
Collapse
Affiliation(s)
- Linyan Di
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Moyan Chen
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yuqi Han
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Guo
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Sheng Ye
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Cheng Zhu
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
3
|
Non-DNA-templated addition of nucleotides to the 3' end of RNAs by the mitochondrial RNA polymerase of Physarum polycephalum. Mol Cell Biol 2008; 28:5795-802. [PMID: 18573885 DOI: 10.1128/mcb.00356-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial gene expression is necessary for proper mitochondrial biogenesis. Genes on the mitochondrial DNA are transcribed by a dedicated mitochondrial RNA polymerase (mtRNAP) that is encoded in the nucleus and imported into mitochondria. In the myxomycete Physarum polycephalum, nucleotides that are not specified by the mitochondrial DNA templates are inserted into some RNAs, a process called RNA editing. This is an essential step in the expression of these RNAs, as the insertion of the nontemplated nucleotides creates open reading frames for the production of proteins from mRNAs or produces required secondary structure in rRNAs and tRNAs. The nontemplated nucleotide is added to the 3' end of the RNA as the RNA is being synthesized during mitochondrial transcription. Because RNA editing is cotranscriptional, the mtRNAP is implicated in RNA editing as well as transcription. We have cloned the cDNA for the mtRNAP of Physarum and have expressed the mtRNAP in Escherichia coli. We have used in vitro transcription assays based on the Physarum mtRNAP to identify a novel activity associated with the mtRNAP in which non-DNA-templated nucleotides are added to the 3' end of RNAs. Any of the four ribonucleoside triphosphates (rNTPs) can act as precursors for this process, and this novel activity is observed when only one rNTP is supplied, a condition under which transcription does not occur. The implications of this activity for the mechanism of RNA editing are discussed.
Collapse
|
4
|
Yu LE, Koslowsky DJ. Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing: structure probing of a gRNA bound to its cognate mRNA. RNA (NEW YORK, N.Y.) 2006; 12:1050-60. [PMID: 16618968 PMCID: PMC1464861 DOI: 10.1261/rna.3406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/08/2006] [Indexed: 05/08/2023]
Abstract
Expression of mitochondrial genes in Trypanosoma brucei requires RNA editing of its mRNA transcripts. During editing, uridylates are precisely inserted and deleted as directed by the gRNA template to create the protein open reading frame. This process involves the bimolecular interaction of the gRNA with its cognate pre-edited mRNA and the assembly of a protein complex with the enzymatic machinery required. While a considerable amount of work has been done identifying the protein components of the editing complex, very little is known about how a functional editosome is assembled. In addition, the importance of RNA structure in establishing a functional editing complex is poorly understood. Work in our lab suggests that different mRNA/gRNA pairs can form similar secondary structures suggesting that a common core architecture may be important for editosome recognition and function. Using solution structure probing, we have investigated the structure of the initiating gRNA, gCYb-558, in the mRNA/gRNA complex with pre-edited apocytochrome b mRNA. Our data indicate that the stem-loop formed by the guiding region of the gRNA alone is maintained in its interaction with the pre-edited message. In addition, our data suggest that a gRNA stem-loop structure is maintained through the first few editing events by the use of alternative base-pairing with the U-tail.
Collapse
Affiliation(s)
- Laura E Yu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, 48824, USA
| | | |
Collapse
|
5
|
Abstract
Over the past several decades, our knowledge of the origin and evolution of mitochondria has been greatly advanced by determination of complete mitochondrial genome sequences. Among the most informative mitochondrial genomes have been those of protists (primarily unicellular eukaryotes), some of which harbor the most gene-rich and most eubacteria-like mitochondrial DNAs (mtDNAs) known. Comparison of mtDNA sequence data has provided insights into the radically diverse trends in mitochondrial genome evolution exhibited by different phylogenetically coherent groupings of eukaryotes, and has allowed us to pinpoint specific protist relatives of the multicellular eukaryotic lineages (animals, plants, and fungi). This comparative genomics approach has also revealed unique and fascinating aspects of mitochondrial gene expression, highlighting the mitochondrion as an evolutionary playground par excellence.
Collapse
Affiliation(s)
- Michael W Gray
- Robert Cedergren Center, Program in Evolutionary Biology, Canadian Institute for Advanced Research, Canada.
| | | | | |
Collapse
|