1
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2025; 21:648-656. [PMID: 39090313 PMCID: PMC11785820 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Slivka J, Yildiz A. Multicolor Tracking of Molecular Motors at Nanometer Resolution. Methods Mol Biol 2025; 2881:133-144. [PMID: 39704941 DOI: 10.1007/978-1-0716-4280-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular motors move processively along cytoskeletal filaments by stepping of their motor domains (MDs). Observation of how the MDs step relative to each other reveals the mechanism of motor processivity and various gating mechanisms used by motors to coordinate the catalytic cycles of their MDs. This chapter will discuss developments in simultaneous observation of the stepping motions of the two MDs of processive motors using two-color single-particle tracking microscopy.Techniques presented: FIONA, multicolor tracking/image registration.
Collapse
Affiliation(s)
- Joseph Slivka
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
Xie P. Modeling of Chemomechanical Coupling of Cytoplasmic Dynein Motors. J Phys Chem B 2024; 128:10063-10074. [PMID: 39382058 DOI: 10.1021/acs.jpcb.4c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytoplasmic dynein homodimer is a motor protein that can step processively on microtubules (MTs) toward the minus end by hydrolyzing ATP molecules. Some dynein motors show a complicated stepping behavior with variable step sizes and having both hand-overhand and inchworm steps, while some mammalian dynein motors show simplistic stepping behavior with a constant step size and having only hand-overhand steps. Here, a model for the chemomechanical coupling of the dynein is presented, based on which an analytical theory is given on the dynamics of the motor. The theoretical results explain consistently and quantitatively the available experimental data on various aspects of the dynamics of dynein with complicated stepping behavior and the dynamics of dynein with simplistic stepping behavior. The very differences in the dynamic behavior between the two motors are due solely to different elastic coefficients of the linkage connecting the two dynein heads, with the dynein motors of the complicated and simplistic stepping behaviors having small and large coefficients, respectively. Moreover, it is analyzed that the ATPase rate of the dynein head with a docked linker being larger than that with an undocked linker is indispensable for the unidirectional motility of the motor, and the small free energy change for the linker docking in the strong MT-binding state facilitates the unidirectional motility.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Schleske JM, Hubrich J, Wirth JO, D’Este E, Engelhardt J, Hell SW. MINFLUX reveals dynein stepping in live neurons. Proc Natl Acad Sci U S A 2024; 121:e2412241121. [PMID: 39254993 PMCID: PMC11420169 DOI: 10.1073/pnas.2412241121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.
Collapse
Affiliation(s)
- Jonas M. Schleske
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jan Otto Wirth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Elisa D’Este
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
5
|
Slivka J, Gleave E, Wijewardena DP, Canty JT, Selvin PR, Carter AP, Yildiz A. Stepping dynamics of dynein characterized by MINFLUX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603667. [PMID: 39071311 PMCID: PMC11275781 DOI: 10.1101/2024.07.16.603667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cytoplasmic dynein is a dimeric motor that drives minus-end directed transport on microtubules (MTs). To couple ATP hydrolysis to a mechanical step, a dynein monomer must be released from the MT before undergoing a conformational change that generates a bias towards the minus end. However, the dynamics of dynein stepping have been poorly characterized by tracking flexible regions of the motor with limited resolution. Here, we developed a cysteine-light mutant of yeast dynein and site-specifically labeled its MT-binding domain in vitro. MINFLUX tracking at sub-millisecond resolution revealed that dynein hydrolyzes one ATP per step and takes multitudes of 8 nm steps at physiological ATP. Steps are preceded by the transient movement towards the plus end. We propose that these backward "dips" correspond to MT release and subsequent diffusion of the stepping monomer around its MT-bound partner before taking a minus-end-directed conformational change of its linker. Our results reveal the order of sub-millisecond events that result in a productive step of dynein.
Collapse
Affiliation(s)
- Joseph Slivka
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
| | - Emma Gleave
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Devinda P Wijewardena
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA
| | - John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
| | - Paul R Selvin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley CA 94720 USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720 USA
| |
Collapse
|
6
|
F Shida J, Ma K, Toll HW, Salinas O, Ma X, Peng CS. Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles. NANO LETTERS 2024; 24:4194-4201. [PMID: 38497588 PMCID: PMC11555556 DOI: 10.1021/acs.nanolett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Single-particle tracking (SPT) is a powerful technique to unveil molecular behaviors crucial to the understanding of many biological processes, but it is limited by factors such as probe photostability and spectral orthogonality. To overcome these limitations, we develop upconverting nanoparticles (UCNPs), which are photostable over several hours at the single-particle level, enabling long-term multicolor SPT. We investigate the brightness of core-shell UCNPs as a function of inert shell thickness to minimize particle size while maintaining sufficient signal for SPT. We explore different rare-earth dopants to optimize for the brightest probes and find that UCNPs doped with 2% Tm3+/30% Yb3+, 10% Er3+/90% Yb3+, and 15% Tm3+/85% Yb3+ represent the optimal probes for blue, green, and near-infrared emission, respectively. The multiplexed 10 nm probes enable three-color single-particle tracking on live HeLa cells for tens of minutes using a single, near-infrared excitation source. These photostable and multiplexed probes open new avenues for numerous biological applications.
Collapse
Affiliation(s)
- João F Shida
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kaibo Ma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Harrison W Toll
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Omar Salinas
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Xiaojie Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Chunte Sam Peng
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
8
|
Huisjes NM, Retzer TM, Scherr MJ, Agarwal R, Rajappa L, Safaric B, Minnen A, Duderstadt KE. Mars, a molecule archive suite for reproducible analysis and reporting of single-molecule properties from bioimages. eLife 2022; 11:e75899. [PMID: 36098381 PMCID: PMC9470159 DOI: 10.7554/elife.75899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid development of new imaging approaches is generating larger and more complex datasets, revealing the time evolution of individual cells and biomolecules. Single-molecule techniques, in particular, provide access to rare intermediates in complex, multistage molecular pathways. However, few standards exist for processing these information-rich datasets, posing challenges for wider dissemination. Here, we present Mars, an open-source platform for storing and processing image-derived properties of biomolecules. Mars provides Fiji/ImageJ2 commands written in Java for common single-molecule analysis tasks using a Molecule Archive architecture that is easily adapted to complex, multistep analysis workflows. Three diverse workflows involving molecule tracking, multichannel fluorescence imaging, and force spectroscopy, demonstrate the range of analysis applications. A comprehensive graphical user interface written in JavaFX enhances biomolecule feature exploration by providing charting, tagging, region highlighting, scriptable dashboards, and interactive image views. The interoperability of ImageJ2 ensures Molecule Archives can easily be opened in multiple environments, including those written in Python using PyImageJ, for interactive scripting and visualization. Mars provides a flexible solution for reproducible analysis of image-derived properties, facilitating the discovery and quantitative classification of new biological phenomena with an open data format accessible to everyone.
Collapse
Affiliation(s)
- Nadia M Huisjes
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Thomas M Retzer
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
- Physik Department, Technische Universität MünchenGarchingGermany
| | - Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Rohit Agarwal
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
- Physik Department, Technische Universität MünchenGarchingGermany
| | - Lional Rajappa
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Anita Minnen
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of BiochemistryMartinsriedGermany
- Physik Department, Technische Universität MünchenGarchingGermany
| |
Collapse
|
9
|
Blanchard AT, Li Z, Duran EC, Scull CE, Hoff JD, Wright KR, Pan V, Walter NG. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching. NANO LETTERS 2022; 22:6235-6244. [PMID: 35881934 PMCID: PMC10080265 DOI: 10.1021/acs.nanolett.2c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.
Collapse
Affiliation(s)
- Aaron T. Blanchard
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Elizabeth C. Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Catherine E. Scull
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - J. Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Keenan R. Wright
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Victor Pan
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, 30322
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|