1
|
Hiraiwa T, Yoshii S, Kawada J, Sugawara T, Kawasaki T, Shibata S, Shindo T, Fujimori K, Umezawa A, Akutsu H. A human iPSC-Derived myelination model for investigating fetal brain injuries. Regen Ther 2025; 29:100-107. [PMID: 40162018 PMCID: PMC11953958 DOI: 10.1016/j.reth.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Cerebral white matter injuries, such as periventricular leukomalacia, are major contributors to neurodevelopmental impairments in preterm infants. Despite the clinical significance of these conditions, human-relevant models for studying fetal brain development and injury mechanisms remain limited. This study introduces a human iPSC-derived myelination model developed using a microfluidic device. The platform combines spinal cord-patterned neuronal and oligodendrocyte spheroids to recapitulate axon-glia interactions and myelination processes in vitro. The model successfully achieved axonal fascicle formation and compact myelin deposition, as validated by immunostaining and transmission electron microscopy. Functional calcium imaging confirmed neuronal activity within the system, underscoring its physiological relevance. While myelination efficiency was partial, with some axons remaining unmyelinated under the current conditions, this model represents a significant advancement in human myelin biology, offering a foundation for investigating fetal and perinatal brain injuries and related pathologies. Future refinements, such as improved myelination coverage and incorporating additional CNS cell types, will enhance its utility for studying disease mechanisms and enabling high-throughput drug screening.
Collapse
Affiliation(s)
- Tsuyoshi Hiraiwa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shoko Yoshii
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., Kanagawa, Japan
| | - Tohru Sugawara
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Chen J, Chen M, Yu X. Fluorescent probes in autoimmune disease research: current status and future prospects. J Transl Med 2025; 23:411. [PMID: 40205498 PMCID: PMC11984237 DOI: 10.1186/s12967-025-06430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Autoimmune diseases (AD) present substantial challenges for early diagnosis and precise treatment due to their intricate pathogenesis and varied clinical manifestations. While existing diagnostic methods and treatment strategies have advanced, their sensitivity, specificity, and real-time applicability in clinical settings continue to exhibit significant limitations. In recent years, fluorescent probes have emerged as highly sensitive and specific biological imaging tools, demonstrating substantial potential in AD research.This review examines the response mechanisms and historical evolution of various types of fluorescent probes, systematically summarizing the latest research advancements in their application to autoimmune diseases. It highlights key applications in biomarker detection, dynamic monitoring of immune cell functions, and assessment of drug treatment efficacy. Furthermore, this article analyzes the technical challenges currently encountered in probe development and proposes potential directions for future research. With ongoing advancements in materials science, nanotechnology, and bioengineering, fluorescent probes are anticipated to achieve higher sensitivity and enhanced functional integration, thereby facilitating early detection, dynamic monitoring, and innovative treatment strategies for autoimmune diseases. Overall, fluorescent probes possess substantial scientific significance and application value in both research and clinical settings related to autoimmune diseases, signaling a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Junli Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Sorelli M, Di Meo D, Bradley S, Cheli F, Ramazzotti J, Perego L, Destrieux C, Hof PR, Pavone FS, Mazzamuto G, Costantini I. Myelinated fiber labeling and orientation mapping of the human brain with light-sheet fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645981. [PMID: 40236238 PMCID: PMC11996332 DOI: 10.1101/2025.03.31.645981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The convoluted network of myelinated fibers that supports behavior, cognition, and sensory processing in the human brain is the source of its extraordinary complexity. Advancements in tissue optical clearing, 3D fluorescence microscopy, and automated image analysis have enabled unprecedented insights into the architecture of these networks. Here, we investigate the multiscale organization of myelinated fibers in human brain tissue from the brainstem, Broca's area, hippocampus, and primary visual cortex by exploiting a specific fiber staining method, light-sheet fluorescence microscopy (LSFM), and an advanced spatial orientation analysis tool. Using an optimized protocol that integrates tissue clearing with the lipophilic DiD probe to achieve uniform and deep myelinated fiber labeling, we generate micrometerresolution volumetric reconstructions of multiple brain regions through an inverted LSFM. Automated image processing, employing unsupervised 3D multiscale Frangi filters, provides orientation distribution functions and local orientation dispersion maps. This enables precise characterization of the directionality of white matter bundles, linking mesoscopic structural properties to orientation details computed at the native micrometric resolution of the LSFM apparatus. The presented workflow illustrates a robust platform for large-scale, high-resolution brain mapping, which may facilitate the investigation of pathological alterations with unparalleled spatial resolution and, furthermore, the validation of other neuroimaging modalities.
Collapse
|
4
|
Liu S, Liu J, Li X, Du X, Yin C, Luo Y, Li C. Fluorescent Particles Based on Aggregation-Induced Emission for Optical Diagnostics of the Central Nervous System. RESEARCH (WASHINGTON, D.C.) 2025; 8:0564. [PMID: 39866911 PMCID: PMC11757665 DOI: 10.34133/research.0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
In 2001, Tang's team discovered a unique type of luminogens with substantial enhanced fluorescence upon aggregation and introduced the concept of "aggregation-induced emission (AIE)". Unlike conventional fluorescent materials, AIE luminogens (AIEgens) emit weak or no fluorescence in solution but become highly fluorescent in aggregated or solid states, due to a mechanism known as restriction of intramolecular motions (RIM). Initially considered a purely inorganic chemical phenomenon, AIE was later applied in biomedicine to improve the sensitivity of immunoassays. Subsequently, AIE has been extensively explored in various biomedical applications, especially in cell imaging. Early studies achieved nonspecific cell imaging using nontargeted AIEgens, and later, specific cellular imaging was realized through the design of targeted AIEgens. These advancements have enabled the visualization of various biomacromolecules and intracellular organelles, providing valuable insights into cellular microenvironments and statuses. Neurological disorders affect over 3 billion people worldwide, highlighting the urgent need for advanced diagnostic and therapeutic tools. AIEgens offer promising opportunities for imaging the central nervous system (CNS), including nerve cells, neural tissues, and blood vessels. This review focuses on the application of AIEgens in CNS imaging, exploring their roles in the diagnosis of various neurological diseases. We will discuss the evolution and conclude with an outlook on the future challenges and opportunities for AIEgens in clinical diagnostics and therapeutics of CNS disorders.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jinkuan Liu
- School of Medicine,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
| | - Xiaoxin Du
- Office of Scientific Research & Development,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yong Luo
- Department of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610031, China
| | - Chenzhong Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
- Biomedical Engineering, School of Medicine,
The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
5
|
Ma Y, You J, Hou J, Shi Y, Zhao E. In situ dressing based on a D-π-A structured aggregation-induced emission photosensitizer for healing infected wounds. J Mater Chem B 2025; 13:1326-1337. [PMID: 39692013 DOI: 10.1039/d4tb02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photodynamic antimicrobial therapy (aPDT) can effectively kill bacteria without promoting drug resistance. However, the phototoxicity of photosensitizers in aPDT against normal cells hinders their practical applications. In this work, we report the utilization of an aggregation-induced emission (AIE)-active photosensitizer, DTTPB, to develop antibacterial dressing for effective eradication of both Gram-positive and Gram-negative bacteria. The D-π-A structure of DTTPB facilitates efficient ROS generation in the aggregate state, addressing the limitations of a traditional photosensitizer. Notably, DTTPB demonstrates good biocompatibility towards normal cells, which minimizes its phototoxicity to normal tissues. To demonstrate its practical implications, DTTPB is combined with Carbomer 940 to create an injectable hydrogel dressing (DTTPB@gel). DTTPB@gel not only adheres to wounds but also maintains the antimicrobial properties of DTTPB, which together contributes to its enhanced wound-healing performance. Biocompatibility and toxicity assessments confirm the safety of this novel material, highlighting its potential as a practical and effective treatment for bacterial infections in wounds. The results underscore the importance of innovative antimicrobial strategies in fighting against antibiotic resistance, paving the way for safer and more effective therapeutic options.
Collapse
Affiliation(s)
- Yu Ma
- School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Engui Zhao
- School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Mo R, Peng Y, Ding Z, Xie H, Qiu Z, Alam P, Liu Y, Chen G, Zhang J, Zhao Z, Tang BZ. Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe. ACS NANO 2025; 19:1070-1079. [PMID: 39745350 DOI: 10.1021/acsnano.4c12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and in vivo imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging. MeOTFVP is strategically designed to target cell membranes by integrating into the phospholipid bilayer through its amphipathy. The donor-acceptor molecular skeleton facilitates a red shift of its photoluminescence into the near-infrared (NIR) spectrum, significantly improving tissue penetration. The affinity of MeOTFVP for cell membranes, coupled with its deep tissue penetration, allows precise tracing in the paw-dorsal root ganglia (DRG) circuit and detailed imaging of the sciatic nerve. This study showcases the application of MeOTFVP as a dual-function neuronal tracer, propelling forward the possibilities for advanced neuronal tracing and imaging using AIEgens.
Collapse
Affiliation(s)
- Rufan Mo
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Ying Peng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Zeyang Ding
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Huilin Xie
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Yong Liu
- AIE Institute, Guangzhou, Guangdong Province 510530, China
| | - Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
7
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
8
|
Wang J, Cao M, Han L, Shangguan P, Liu Y, Zhong Y, Chen C, Wang G, Chen X, Lin M, Lu M, Luo Z, He M, Sung HHY, Niu G, Lam JWY, Shi B, Tang BZ. Blood-Brain Barrier-Penetrative Fluorescent Anticancer Agents Triggering Paraptosis and Ferroptosis for Glioblastoma Therapy. J Am Chem Soc 2024; 146:28783-28794. [PMID: 39394087 DOI: 10.1021/jacs.4c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Chaoyue Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ming Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mengya Lu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhengqun Luo
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mu He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
9
|
Yu Y, Ni W, Shi X, Bian Y, Li H, Liu M, Chen W, Zhang M, Jiang S, Cheng M, Li F, Zhang Y, Zhang Z, Huang H, Han J. A Supramolecular Fluorescent Sensor Array Composed of Conjugated Fluorophores and Cucurbit[7]uril for Bacterial Recognition. Anal Chem 2024; 96:14490-14498. [PMID: 39185815 DOI: 10.1021/acs.analchem.4c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Bacterial infections have emerged as a significant contributor to global mortality and morbidity rates. Herein, we introduce a dual fluorescence "turn-on" supramolecular sensor array composed of three assembled complexes (C1-C3), formed from three positively charged fluorophores (A1-A3) and one cucurbit[7]uril (CB[7]). The ability of this three-element array to simultaneously recognize 10 bacterial species within just 30 s was remarkable, boasting an impressive 100% accuracy. Additionally, the array excelled at distinguishing among various bacterial mixtures and enabled the quantitative detection of common bacterial strains. Notably, it has been skillfully applied to differentiate 10 bacterial samples in urine, achieving excellent differentiation and showcasing promising potential for medical diagnostic applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangdong 510515, China
| | - Ying Bian
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mai Liu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weijia Chen
- Medicine Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine Nanjing, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese, Nanjing 210006, China
| | - Meng Zhang
- Medicine Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine Nanjing, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese, Nanjing 210006, China
| | - Shujun Jiang
- Medicine Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine Nanjing, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese, Nanjing 210006, China
| | - Mingqi Cheng
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanliang Zhang
- Medicine Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine Nanjing, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese, Nanjing 210006, China
| | - Zhijun Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Liu X, Chen Y, Hang C, Cheng J, Peng D, Li Y, Jiang X. Coupling Nanoscale Precision with Multiscale Imaging: A Multifunctional Near-Infrared Dye for the Brain. ACS NANO 2024; 18:22233-22244. [PMID: 39102625 DOI: 10.1021/acsnano.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Live imaging of primary neural cells is crucial for monitoring neuronal activity, especially multiscale and multifunctional imaging that offers excellent biocompatibility. Multiscale imaging can provide insights into cellular structure and function from the nanoscale to the millimeter scale. Multifunctional imaging can monitor different activities in the brain. However, this remains a challenge because of the lack of dyes with a high signal-to-background ratio, water solubility, and multiscale and multifunctional imaging capabilities. In this study, we present a neural dye with near-infrared (NIR) emissions (>700 nm) that enables ultrafast staining (in less than 1 min) for the imaging of primary neurons. This dye not only enables multiscale neural live-cell imaging from vesicles in neurites, neural membranes, and single neurons to the whole brain but also facilitates multifunctional imaging, such as the monitoring and quantifying of synaptic vesicles and the changes in membrane potential. We also explore the potential of this NIR neural dye for staining brain slices and live brains. The NIR neural dye exhibits superior binding with neural membranes compared to commercial dyes, thereby achieving multiscale and multifunctional brain neuroimaging. In conclusion, our findings introduce a significant breakthrough in neuroimaging dyes by developing a category of small molecular dyes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Chen Hang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Jinxiong Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Dinglu Peng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
11
|
Li H, Zhang T, Liao Y, Liu C, He Y, Wang Y, Li C, Jiang C, Li C, Luo G, Xiang Z, Duo Y. Recent advances of aggregation‐induced emission in body surface organs. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
AbstractThe surface organs mainly comprise the superficial layers of various parts of the mammalian body, including the skin, eyes, and ears, which provide solid protection against various threats to the entire body. Damage to surface organs could lead to many serious diseases or even death. Currently, despite significant advancements in this field, there remain numerous enigmas that necessitate expeditious resolution, particularly pertaining to diagnostic and therapeutic objectives. The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis, bioimaging, and therapy of superficial organs. The aggregation‐induced emission (AIE) phenomenon, initially observed by Prof. Ben Zhong Tang, stands out due to its contrasting behavior to the aggregation‐caused quenching effect. This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages. In this review of literature, we aim to provide a comprehensive summary of recent advances of AIE lumenogen (AIEgen)‐based nanoplatforms in the fields of detection, diagnosis, imaging, and therapeutics of surface organ‐related diseases and discuss their prospects in the domain. It is hoped that this review will help attract researchers’ attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Tingting Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yingying Liao
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chutong Liu
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Yongfei Wang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Conglei Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Cheng Jiang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Chenzhong Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Guanghong Luo
- Department of Radiation Oncology Shenzhen People's Hospital (The Second Clinical Medical College The First Affiliated Hospital Jinan University Southern University of Science and Technology) Shenzhen China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science Harvard University Boston Massachusetts USA
| |
Collapse
|
12
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
13
|
Ge J, Wang LJ, Pan X, Zhang C, Wu MY, Feng S. Colorimetric and ratiometric supramolecular AIE fluorescent probe for the on-site monitoring of fipronil. Analyst 2023; 148:5395-5401. [PMID: 37754754 DOI: 10.1039/d3an01333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The overuse of fipronil (FPN, a broad-spectrum insecticide) in agriculture has brought great concerns for environmental pollution and food safety. The development of a rapid, reliable, and portable analytical method for the on-site monitoring of FPN is therefore of great significance but is full of challenge. Herein, a novel supramolecular probe using human serum albumin (HSA) as the host and an aggregation-induced emission-active fluorescence probe LIQ-TPA-TZ as the guest was developed for the colorimetric and ratiometric detection of FPN, displaying fast response (30 s), high sensitivity (LOD ∼ 0.05 μM), and good selectivity and anti-interference performance. Moreover, portable paper-based test strips could be facilely obtained and utilized for the determination of FPN, showing colorimetric changes from yellow to orange. This supramolecular probe also demonstrated great potential in real applications for choosing the best cleaning method to reduce the residue rate of FPN on apples. This study provides a versatile tool for the fast and real-time analysis of FPN, which greatly benefits the on-site determination of pesticides with the use of simple testing apparatus.
Collapse
Affiliation(s)
- Junxu Ge
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, Zhejiang, 325000, China
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chungu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
14
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
17
|
Wang JL, Xia FW, Wang Y, Shi HZ, Wang LJ, Zhao Y, Song JX, Wu MY, Feng S. Molecular Charge and Antibacterial Performance Relationships of Aggregation-Induced Emission Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17433-17443. [PMID: 36926841 DOI: 10.1021/acsami.2c18835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial infections remain a major cause of morbidity worldwide due to drug resistance of pathogenic bacteria. Photodynamic therapy (PDT) has emerged as a promising approach to overcome this drug resistance. However, existing photosensitizers (PSs) are broad-spectrum antibacterial agents that dysregulate the microflora balance resulting in undesirable side effects. Herein, we synthesized a series of aggregation-induced emission (AIE)-active PSs with a lipophilic cationic AIE core with varying charges, named TBTCP and its derivatives. The association of the difference in their molecular charge with the antibacterial effects was systemically investigated. Among the derivatives presented, TBTCP-SF with the electronegative sulfonate group nulled its ability to bind to and ablate Gram-positive (G+) or Gram-negative (G-) bacteria. TBTCP-QY modified by electropositive quaternary ammonium facilitated binding and augmented the photodynamic antibacterial activity for both G+ and G- bacteria. TBTCP-PEG with hydrophilic neutral ligands selectively bound and inactivated G+ bacteria. Under white-light illumination, TBTCP-PEG ablated 99.9% methicillin-resistant Staphylococcus aureus (MRSA) and promoted wound healing in MRSA-infected mice, eliminating MRSA infection both in vitro and in vivo. Our work provides unprecedented insight into the utility of AIE-active PSs for highly targeted and efficient photodynamic ablation of either G+ or G- bacteria that can be translated to next-generation antibacterial materials.
Collapse
Affiliation(s)
- Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yun Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hai-Zhu Shi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jia-Xing Song
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
18
|
Aggregation-Induced emission photosensitizer with lysosomal response for photodynamic therapy against cancer. Bioorg Chem 2023; 132:106349. [PMID: 36716644 DOI: 10.1016/j.bioorg.2023.106349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Photosensitizers play a key role in bioimaging and photodynamic therapy (PDT) of cancer. However, conventional photosensitizers usually do not achieve the desired efficacy in PDT due to their poor photostability, targeting ability, and responsiveness. Herein, we designed a series of photosensitizers with aggregation-induced emission (AIE) effect using benzothiazole- triphenylamine (BZT-triphenylamine) as the parent nucleus. The synthesized compound SIN ((E)-2-(4-(diphenylamino)styryl)-3-(4-iodobutyl)benzo[d]thiazol-3-ium) exhibits good biocompatibility, photostability, and bright emission in the near-infrared range (600-800 nm). The fluorescence emission intensity is responsive to viscosity, with significant fluorescence enhancement (48 times) and high fluorescence quantum yield (4.45 %) at high viscosity. Moreover, SIN has particular lysosome targeting properties with a Pearson correlation coefficient (PCC) of 0.97 and has good 1O2 generation ability under white light irradiation, especially in a weak acidic environment. Thus, SIN can realize good bioimaging ability and photodynamic therapeutic efficacy under the highly viscous and weakly acidic environment of lysosomes in the tumor cells. This study indicates that SIN has potential as a multifunctional organic photosensitizer for bioimaging and PDT of tumor.
Collapse
|
19
|
Duo Y, Luo G, Zhang W, Wang R, Xiao GG, Li Z, Li X, Chen M, Yoon J, Tang BZ. Noncancerous disease-targeting AIEgens. Chem Soc Rev 2023; 52:1024-1067. [PMID: 36602333 DOI: 10.1039/d2cs00610c] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Noncancerous diseases include a wide plethora of medical conditions beyond cancer and are a major cause of mortality around the world. Despite progresses in clinical research, many puzzles about these diseases remain unanswered, and new therapies are continuously being sought. The evolution of bio-nanomedicine has enabled huge advancements in biosensing, diagnosis, bioimaging, and therapeutics. The recent development of aggregation-induced emission luminogens (AIEgens) has provided an impetus to the field of molecular bionanomaterials. Following aggregation, AIEgens show strong emission, overcoming the problems associated with the aggregation-caused quenching (ACQ) effect. They also have other unique properties, including low background interferences, high signal-to-noise ratios, photostability, and excellent biocompatibility, along with activatable aggregation-enhanced theranostic effects, which help them achieve excellent therapeutic effects as an one-for-all multimodal theranostic platform. This review provides a comprehensive overview of the overall progresses in AIEgen-based nanoplatforms for the detection, diagnosis, bioimaging, and bioimaging-guided treatment of noncancerous diseases. In addition, it details future perspectives and the potential clinical applications of these AIEgens in noncancerous diseases are also proposed. This review hopes to motivate further interest in this topic and promote ideation for the further exploration of more advanced AIEgens in a broad range of biomedical and clinical applications in patients with noncancerous diseases.
Collapse
Affiliation(s)
- Yanhong Duo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Wentao Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Renzhi Wang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmacology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Meili Chen
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
20
|
Wu MY, Chen L, Chen Q, Hu R, Xu X, Wang Y, Li J, Feng S, Dong C, Zhang XL, Li Z, Wang L, Chen S, Gu M. Engineered Phage with Aggregation-Induced Emission Photosensitizer in Cocktail Therapy against Sepsis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208578. [PMID: 36440662 DOI: 10.1002/adma.202208578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sepsis, a widely recognized disease, is characterized by multiple pathogen infections. Therefore, it is imperative to develop methods that can efficiently identify and neutralize pathogen species. Phage cocktail therapy utilizes the host specificity of phages to adapt to infect resistant bacteria. However, its low sterilization stability efficiency and lack of imaging units seriously restrict its application. Here, a novel strategy combining the aggregation-induced emission photosensitizer (AIE-PS) TBTCP-PMB with phages through a nucleophilic substitution reaction between benzyl bromide and sulfhydryl groups to remove pathogenic bacteria for sepsis treatment is proposed. This strategy retains the phage's host specificity while possessing AIE-PS characteristics with a fluorescence imaging function and reactive oxygen species (ROS) for detecting and sterilizing bacteria. This synergetic strategy combining phage cocktail therapy and photodynamic therapy (PDT) shows a strong "1 + 1 > 2" bactericidal efficacy and superior performance in sepsis mouse models with good biocompatibility. Furthermore, the strategy can quickly diagnose blood infections of clinical blood samples. This simple and accurate strategy provides a promising therapeutic platform for rapid pathogen detection and point-of-care diagnosis. Moreover, it presents a new method for expanding the library of antibacterial drugs to develop new strain identification and improve infectious disease treatment, thereby demonstrating strong translational potential.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Luojia Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Qingrong Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Rui Hu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Xiaoyu Xu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Yifei Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, P. R. China
| | - Jie Li
- Department of Medical Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, P. R. China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Changjiang Dong
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, P. R. China
| | - Meijia Gu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
21
|
Ho PY, Chou TY, Kam C, Huang W, He Z, Ngan AH, Chen S. A dual organelle-targeting mechanosensitive probe. SCIENCE ADVANCES 2023; 9:eabn5390. [PMID: 36630498 PMCID: PMC9833668 DOI: 10.1126/sciadv.abn5390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Cells are responsive to the mechanical environment, but the methods to detect simultaneously how different organelles react in mechanobiological processes remain largely unexplored. We herein report a dual organelle-targeting fluorescent probe, (E)-1-[3-(diethoxyphosphoryl)propyl]-4-[4-(diethylamino)styryl]pyridin-1-ium bromide (ASP-PE), for mechanical mapping in live cells. ASP-PE is aggregation-induced emission active and is sensitive to the local mechanical environment. It targets the plasma membrane (PM) and intracellular mitochondria in cells by its phosphonate moiety and pyridinium. In this work, through ASP-PE staining, changes of membrane tension in the PM and mitochondria in response to varied osmotic pressure and substrate stiffness are visualized using fluorescence lifetime imaging microscopy. The mechanobiological importance of actin filaments and microtubules in the PM and mitochondria is also investigated using this probe. Computational simulations are applied to study the sensing mechanism of the probe. This study introduces a unique tool for mapping the membrane tension in the PM and mitochondria together, providing us great opportunities to study organelle's interactions in mechanobiology.
Collapse
Affiliation(s)
- Po-Yu Ho
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, P. R. China
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, P. R. China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, P. R. China
| | - Wenbin Huang
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen 518055, P. R. China
| | - Zikai He
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen 518055, P. R. China
| | - Alfonso H. W. Ngan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, P. R. China
| |
Collapse
|
22
|
Wei W, Qiu Z. Diagnostics and theranostics of central nervous system diseases based on aggregation-induced emission luminogens. Biosens Bioelectron 2022; 217:114670. [PMID: 36126555 DOI: 10.1016/j.bios.2022.114670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Central nervous system (CNS) diseases include Alzheimer's disease (AD), Parkinson's disease (PD), brain tumors, strokes, and other important diseases that are harmful and fatal to human beings. CNS diseases have the characteristics of high fatality rates, difficult diagnosis, and costly treatment. The diagnosis and treatment of CNS diseases by molecular imaging are usually limited by the depth of tissue penetration and the blood-brain barrier (BBB). Therefore, it is still a huge challenge to distinguish between the lesion and the surrounding parenchymal boundary with high sensitivity and specificity. Compared with traditional fluorophores with aggregation-caused quenching effect, luminogens with aggregation-induced emission (AIE) characteristics have strong near-infrared deep penetration, large Stokes shift, excellent biocompatibility, light stability, and desirable BBB permeability. In view of this, developing novel AIE-based materials for diagnostics and theranostics of CNS diseases is promising and of great significance. Herein, we highlight the recent research progress in this field with a special focus on near-infrared imaging and AIE nanorobots for CNS diseases. The design principle of AIE probes is discussed in detail, and the outlook is presented as well.
Collapse
Affiliation(s)
- Weichen Wei
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, United States
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
23
|
A near-infrared plasma membrane-specific AIE probe for fluorescence lifetime imaging of phagocytosis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractPhagocytosis is a biological process that plays a key role in host defense and tissue homeostasis. Efficient approaches for realtime imaging of phagocytosis are highly desired but limited. Herein, an AIE-active near-infrared fluorescent probe, named TBTCP, was developed for fluorescence lifetime imaging of phagocytosis. TBTCP could selectively label the cell plasma membrane with fast staining, wash-free process, high signal-to-background ratio, and excellent photostability. Cellular membrane statuses under different osmolarities as well as macrophage phagocytosis of bacteria or large silica particles in early stages could be reported by the fluorescence lifetime changes of TBTCP. Compared with current fluorescence imaging methods, which target the bioenvironmental changes in the late phagocytosis stage, this approach detects the changes in the cell membrane, thus giving a faster response to phagocytosis. This article provides a functional tool to report the phagocytic dynamics of macrophages which may greatly contribute to the studies of phagocytic function-related diseases.
Collapse
|