1
|
Shin YU, Yu S, Jeon J, Kim H, Kim T, Cheng LH, Bae H, Jang A. Exploring critical pathways using robust strategies: Nanodiamond electrocatalysts for promoting boron removal via electrosorption. WATER RESEARCH 2025; 273:123080. [PMID: 39756224 DOI: 10.1016/j.watres.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
This study presents the first instance of a crucial route for the efficient removal of boron from effluents using a strategically applied electrosorption technology using nanodiamonds annealed under argon (denoted as A-NDs). We demonstrate a significant enhancement in adsorption capacity for boron removal facilitated by a flow-through electrosorption cell, and outline the results of surface characterization and electrochemical activity tests of the fabricated nanodiamond (ND) anodes (e.g., Pristine ND and A-NDs annealed at 800 and 1200 ℃). To identify the role of DO in the electrosorption system, we compared the results obtained in the natural state (without gas purging) with those obtained with ambient air and N2 gas purging. In particular, the degree of electrode deterioration (change in the cathode carbon compositional ratio) during the charging process was characterized using X-ray photoelectron spectroscopy. Overall, our system exhibits a favorable boron removal capability (sorption capacity reached 10.5 μmol/g) and energy consumption of <3.4 kWh g-B. Finally, we developed a prediction model for effluent properties using time-series machine learning algorithms based on various electrosorption variables (e.g., DO, pH dynamics, charging/discharging modes and times, and voltage), Through post-process of constructed ML model, voltage showed significant predictive importance. Additionally, the necessity of sequential modeling was emphasized by SHAP analysis. The application of ML algorithms provided a novel approach for the system optimization of electrified water treatment.
Collapse
Affiliation(s)
- Yong-Uk Shin
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - SungIl Yu
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junbeom Jeon
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hanwoong Kim
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taehun Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Li-Hua Cheng
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Yin H, Huang L, Dai Y, Zheng Z, Li Y, Tang B, Wang X, Shi L. In-situ redox processes of electrosorption-based systems during As, Cr detoxification and recovery: mechanisms, applications and challenges. CHEMICAL ENGINEERING JOURNAL 2025; 503:157946. [DOI: 10.1016/j.cej.2024.157946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Gu X, Wei W, Feng X, Wang R, Yang S, Zeng Z, Chen H. Photovoltaic-Driven Battery Deionization System for Efficient and Sustainable Seawater Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22992-23003. [PMID: 39698896 DOI: 10.1021/acs.est.4c11467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Seawater desalination via electrochemical battery deionization (BDI) has shown significant potential for freshwater production. However, its widespread application has been limited by the high energy costs involved. To facilitate the commercialization of BDI technology, it is crucial to develop innovative integrated BDI systems that utilize sustainable energy sources and assess their practical performance for desalination of natural seawater. In this study, we construct the first photovoltaic-driven battery deionization system, termed PV-BDI, capable of continuously and simultaneously removing multiple ions from natural seawater. The system successfully produced freshwater with a total dissolved solids (TDS) level of 704 mg L-1, meeting the maximum acceptable TDS limits recommended by the World Health Organization (WHO) for drinking water standards, which specify a maximum TDS limit of 1000 mg L-1. The mass-specific energy consumption for salt removal to obtain drinking water from natural seawater via this system has been reduced to 0.036 kW·h kg-1, surpassing the performance of other state-of-the-art PV-driven electrochemical-based desalination technologies such as electrodialysis and capacitive deionization (0.068-2.100 kW·h kg-1). This work presents a pioneering proof-of-concept integrated PV-BDI system and demonstrates its practical performance for desalinating natural seawater, thereby laying the foundation for expanding BDI systems in the near future for environmentally friendly and sustainable industrial-scale seawater desalination.
Collapse
Affiliation(s)
- Xiaosong Gu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Wei
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songhe Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenzhong Zeng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Long W, Koo JW, Yuan Z, She Q. Flow-through electrochemically assisted reverse-osmosis: A new process towards low-chemical desalination. WATER RESEARCH 2024; 249:120982. [PMID: 38101048 DOI: 10.1016/j.watres.2023.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Two-pass reverse osmosis (RO) process is prevailing in seawater desalination, but each process must consume considerable amounts of chemicals to secure product water quality. Caustic soda is used to raise the pH of the first-pass RO permeate (also the second-pass RO feed) to ensure adequate removal of boron in the subsequent second-pass RO, while antiscalants and disinfectants such as hypochlorite are added in the feed seawater for scaling and biofouling control of the first-pass RO membranes. Here, we report for the first time a flow-through electrochemically assisted reverse osmosis (FT-EARO) module system used in the first-pass RO, aiming to dramatically reduce or even eliminate chemical usage for the current RO desalination. This novel system integrated an electroconductive permeate carrier as cathode and an electroconductive feed spacer as anode on each side of the first-pass RO membrane. Upon applying an extremely low-energy (< 0.005 kWh/m3) electrical field, the FT-EARO module could (1) produce a permeate with pH >10 with no alkali dosage, ensuring sufficient boron removal in the second-pass RO, and (2) generate protons and low-concentration free chlorine near the membrane surface, potentially discouraging membrane scaling and biofouling while maintaining satisfactory desalination performance. The current study further elucidated the high scalability of this novel electrified high-pressure RO module design. The low-chemical manner of FT-EARO presents an attractive practical option towards green and sustainable seawater desalination.
Collapse
Affiliation(s)
- Wei Long
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jing Wee Koo
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Ziwen Yuan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
5
|
Zhang P, He M, Li F, Fang D, Li C, Mo X, Li K, Wang H. Unlocking Bimetallic Active Centers via Heterostructure Engineering for Exceptional Phosphate Electrosorption: Internal Electric Field-Induced Electronic Structure Reconstruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2112-2122. [PMID: 38146610 DOI: 10.1021/acs.est.3c07254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Development of electrode materials exhibiting exceptional phosphate removal performance represents a promising strategy to mitigate eutrophication and meet ever-stricter stringent emission standards. Herein, we precisely designed a novel LaCeOx heterostructure-decorated hierarchical carbon composite (L8C2PC) for high-efficiency phosphate electrosorption. This approach establishes an internal electric field within the LaCeOx heterostructure, where the electrons transfer from Ce atoms to neighboring La atoms through superexchange interactions in La-O-Ce coordination units. The modulatory heterostructure endows a positive shift of the d band of La sites and the increase of electron density at Fermi level, promoting stronger orbital overlap and binding interactions. The introduction of oxygen vacancies during the in situ nucleation process reduces the kinetic barrier for phosphate-ion migration and supplies additional active centers. Moreover, the hierarchical carbon framework ensures electrical double-layer capacitance for phosphate storage and interconnected ion migration channels. Such synergistically multiple active centers grant the L8C2PC electrode with high-efficiency record in phosphate electrosorption. As expected, the L8C2PC electrode demonstrates the highest removal capability among the reported electrode materials with a saturation capacity of 401.31 mg P g-1 and a dynamic capacity of 91.83 mg P g-1 at 1.2 V. This electrochemical system also performs well in the dephosphorization in natural water samples with low concentration that enable effluent concentration to meet the first-class discharge standard for China (0.5 mg P L-1). This study advances efficient dephosphorization techniques to a new level and offers a deep understanding of the internal electric field that regulates metal orbitals and electron densities in heterostructure engineering.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Mingming He
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Fukuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Dezhi Fang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Chen Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Xiaoping Mo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Kexun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Hao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
6
|
Ma W, Patel SK, Marcos Hernández M, Wang X, Zhou X, Pan W, Shin Y, Villagrán D, Elimelech M. Rapid, Selective, and Chemical-Free Removal of Dissolved Silica from Water via Electrosorption: Feasibility and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:947-959. [PMID: 38153969 DOI: 10.1021/acs.est.3c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The unavoidable and detrimental formation of silica scale in engineered processes necessitates the urgent development of effective, economic, and sustainable strategies for dissolved silica removal from water. Herein, we demonstrate a rapid, chemical-free, and selective silica removal method using electrosorption. Specifically, we confirm the feasibility of exploiting local pH dynamics at the electrodes in flow-through electrosorption, achieved through a counterintuitive cell configuration design, to induce ionization and concomitant electrosorption of dissolved silica. In addition, to improve the feasibility of silica electrosorption under high-salinity solutions, we developed a silica-selective anode by functionalizing porous activated carbon cloths with aluminum hydroxide nanoparticles (Al(OH)3-p-ACC). The modification markedly enhances silica sorption capacity (2.8 vs 1.1 mgsilica ganode-1) and reduces the specific energy consumption (13.3 vs 19.8 kWh kgsilica-1). Notably, the modified electrode retains remarkable silica sorption capacity even in the presence of high concentrations of co-occurring ions (up to 100 mM NaCl). The mechanisms underlying the superior silica removal stability and selectivity with the Al(OH)3-p-ACC electrode are also elucidated, revealing a synergistic interaction involving outer-sphere and inner-sphere complexation between dissolved silica and Al(OH)3 nanoparticles on the electrodes. Moreover, we find that effective regeneration of the electrodes may be achieved by applying a reverse potential during discharge, although complete regeneration of the modified electrodes may necessitate alternative materials or process optimization. We recommend the adoption of feedwater-specific designs for the development of future silica-selective electrodes in electrosorption capable of meeting silica removal demands across a wide range of engineered systems.
Collapse
Affiliation(s)
- Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mariana Marcos Hernández
- Department of Chemistry and Biochemistry and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Weiyi Pan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Yonguk Shin
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology─Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Yin H, Liu L, Ma J, Zhang C, Qiu G. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. WATER RESEARCH 2023; 246:120734. [PMID: 37862875 DOI: 10.1016/j.watres.2023.120734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 μg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
8
|
Patel SK, Pan W, Shin YU, Kamcev J, Elimelech M. Electrosorption Integrated with Bipolar Membrane Water Dissociation: A Coupled Approach to Chemical-free Boron Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4578-4590. [PMID: 36893399 DOI: 10.1021/acs.est.3c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Boron removal from aqueous solutions has long persisted as a technological challenge, accounting for a disproportionately large fraction of the chemical and energy usage in seawater desalination and other industrial processes like lithium recovery. Here, we introduce a novel electrosorption-based boron removal technology with the capability to overcome the limitations of current state-of-the-art methods. Specifically, we incorporate a bipolar membrane (BPM) between a pair of porous carbon electrodes, demonstrating a synergized BPM-electrosorption process for the first time. The ion transport and charge transfer mechanisms of the BPM-electrosorption system are thoroughly investigated, confirming that water dissociation in the BPM is highly coupled with electrosorption of anions at the anode. We then demonstrate effective boron removal by the BPM-electrosorption system and verify that the mechanism for boron removal is electrosorption, as opposed to adsorption on the carbon electrodes or in the BPM. The effect of applied voltage on the boron removal performance is then evaluated, revealing that applied potentials above ∼1.0 V result in a decline in process efficiency due to the increased prevalence of detrimental Faradaic reactions at the anode. The BPM-electrosorption system is then directly compared with flow-through electrosorption, highlighting key advantages of the process with regard to boron sorption capacity and energy consumption. Overall, the BPM-electrosorption shows promising boron removal capability, with a sorption capacity >4.5 μmol g-C-1 and a corresponding specific energy consumption of <2.5 kWh g-B-1.
Collapse
Affiliation(s)
- Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Weiyi Pan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Yong-Uk Shin
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Jovan Kamcev
- Department of Chemical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
9
|
Liu N, Yu L, Liu B, Yu F, Li L, Xiao Y, Yang J, Ma J. Ti 3 C 2 -MXene Partially Derived Hierarchical 1D/2D TiO 2 /Ti 3 C 2 Heterostructure Electrode for High-Performance Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204041. [PMID: 36442852 PMCID: PMC9839853 DOI: 10.1002/advs.202204041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Constructing faradaic electrode with superior desalination performance is important for expanding the applications of capacitive deionization (CDI). Herein, a simple one-step alkalized treatment for in situ synthesis of 1D TiO2 nanowires on the surface of 2D Ti3 C2 nanosheets, forming a Ti3 C2 -MXene partially derived hierarchical 1D/2D TiO2 /Ti3 C2 heterostructure as the cathode electrode is reported. Cross-linked TiO2 nanowires on the surface help avoid layer stacking while acting as the protective layer against contact of internal Ti3 C2 with dissolved oxygen in water. The inner Ti3 C2 MXene nanosheets cross over the TiO2 nanowires can provide abundant active adsorption sites and short ion/electron diffusion pathways. . Density functional theory calculations demonstrated that Ti3 C2 can consecutively inject electrons into TiO2 , indicating the high electrochemical activity of the TiO2 /Ti3 C2 . Benefiting from the 1D/2D hierarchical structure and synergistic effect of TiO2 and Ti3 C2 , TiO2 /Ti3 C2 heterostructure presents a favorable hybrid CDI performance, with a superior desalination capacity (75.62 mg g-1 ), fast salt adsorption rate (1.3 mg g-1 min-1 ), and satisfactory cycling stability, which is better than that of most published MXene-based electrodes. This study provides a feasible partial derivative strategy for construction of a hierarchical 1D/2D heterostructure to overcome the restrictions of 2D MXene nanosheets in CDI.
Collapse
Affiliation(s)
- Ningning Liu
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Lanlan Yu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Baojun Liu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Fei Yu
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghai201306P. R. China
| | - Liqing Li
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| | - Yi Xiao
- Institute of Materials ScienceTU Darmstadt64287DarmstadtGermany
| | - Jinhu Yang
- School of Chemical Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Jie Ma
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| |
Collapse
|
10
|
Transport mechanisms in electrodialysis: The effect on selective ion transport in multi-ionic solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Sun J, Zhang C, Song Z, Waite TD. Boron Removal from Reverse Osmosis Permeate Using an Electrosorption Process: Feasibility, Kinetics, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10391-10401. [PMID: 35766603 DOI: 10.1021/acs.est.2c02297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boron is present in the form of boric acid (B(OH)3 or H3BO3) in seawater, geothermal waters, and some industrial wastewaters but is toxic at elevated concentrations to both plants and humans. Effective removal of boron from solutions at circumneutral pH by existing technologies such as reverse osmosis is constrained by high energy consumption and low removal efficiency. In this work, we present an asymmetric, membrane-containing flow-by electrosorption system for boron removal. Upon charging, the catholyte pH rapidly increases to above ∼10.7 as a result of water electrolysis and other Faradaic reactions with resultant deprotonation of boric acid to form B(OH)4- and subsequent removal from solution by electrosorption to the anode. Results also show that the asymmetric flow-by electrosorption system is capable of treating feed streams with high concentrations of boron and RO permeate containing multiple competing ionic species. On the basis of the experimental results obtained, a mathematical model has been developed that adequately describes the kinetics and mechanism of boron removal by the asymmetric electrosorption system. Overall, this study not only provides new insights into boron removal mechanisms by electrosorption but also opens up a new pathway to eliminate amphoteric pollutants from contaminated source waters.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhao Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing 214206, Jiangsu, P. R. China
| |
Collapse
|
13
|
Mubita T, Porada S, Biesheuvel P, van der Wal A, Dykstra J. Strategies to increase ion selectivity in electrodialysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Shocron A, Atlas I, Suss M. Predicting ion selectivity in water purification by capacitive deionization: electric double layer models. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Atlas I, Wu J, Shocron A, Suss M. Spatial variations of pH in electrodialysis stacks: Theory. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|