1
|
Schneider MM, Knowles TPJ, Keller S, Krainer G. Microfluidics for protein interaction studies: current methods, challenges, and future perspectives. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025:10.1007/s00249-025-01763-x. [PMID: 40493051 DOI: 10.1007/s00249-025-01763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/06/2025] [Accepted: 05/23/2025] [Indexed: 06/12/2025]
Abstract
Proteins are the key molecular players of life, carrying out their functions through interactions. Microfluidic technologies have emerged as powerful tools for studying protein interactions with exquisite sensitivity, resolution, and throughput. In this review, we highlight recent advances in microfluidic approaches for protein interaction studies. We first explore continuous-flow microfluidics, which utilize diffusion-based techniques and electrophoretic methods, before examining the role of droplet microfluidics in probing protein interactions. We provide an overview of the diverse applications of these technologies in biophysical research, drug discovery, and clinical diagnostics. We conclude with a discussion of the potential of microfluidics for driving future innovations and emerging opportunities.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
2
|
Bismut S, Schneider MM, Miyasaki M, Feng Y, Wilde EJ, Gunawardena MD, Knowles TPJ, Kaminski Schierle GS, Itzhaki LS, Kumita JR. Using a stable protein scaffold to display peptides that bind to alpha-synuclein fibrils. Protein Sci 2025; 34:e70150. [PMID: 40371781 PMCID: PMC12079352 DOI: 10.1002/pro.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Amyloid fibrils are ordered aggregates that are a pathological hallmark of many neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The process of amyloid formation involves a complex cascade by which soluble monomeric protein converts to insoluble, ordered aggregates (amyloid fibrils). Although inhibiting the aggregation pathway is a key target for therapeutic development, the heterogeneous collection of aggregation-prone species formed in this process, including oligomers, protofibrils, and fibrils, represents other targets for modifying disease pathology. Developing molecules that can bind to amyloid fibrils and potentially disrupt the harmful interactions between the fibrils and the cellular components would be advantageous. Designing peptide modulators for α-synuclein aggregation is of great interest; however, effective inhibitory peptides are often hydrophobic and hence difficult to handle. Therefore, developing strategies to display these peptides in a soluble scaffold would be very beneficial. Here we demonstrate that the ultra-stable consensus-designed tetratricopeptide repeat (CTPR) protein scaffold can be grafted with "KLVFF" derived peptides previously identified to inhibit protein aggregation and interact with amyloid fibrils to produce proteins that bind along the surface of α-synuclein fibrils with micromolar affinity. Given the ability to insert hydrophobic peptides to produce soluble, CTPR-based binders, this method may prove beneficial in screening for peptide modulators of protein aggregation.
Collapse
Affiliation(s)
- Samuel Bismut
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | | | | | - Yuqing Feng
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | - Ellis J. Wilde
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Janet R. Kumita
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
3
|
Rice L, Marzano N, Cox D, Skewes B, van Oijen AM, Ecroyd H. Single-molecule observations of human small heat shock proteins in complex with aggregation-prone client proteins. Biochem J 2025; 482:413-432. [PMID: 40241479 DOI: 10.1042/bcj20240473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that act to prevent the aberrant aggregation of misfolded proteins. Whilst it is suggested that sHsps prevent aggregation by binding to misfolded client proteins, the dynamic and heterogeneous nature of sHsps has hindered attempts to establish the mechanistic details of how sHsp-client protein complexes form. Single-molecule approaches have emerged as a powerful tool to investigate dynamic and heterogeneous interactions such as those that can occur between sHsps and their client proteins. Here, we use total internal reflection fluorescence microscopy to observe and characterise the complexes formed between model aggregation-prone client proteins (firefly luciferase, rhodanese and chloride intracellular channel 1 protein), and the human sHsps αB-crystallin (αB-c; HSPB5) and Hsp27 (HSPB1). We show that small (monomeric or dimeric) forms of both αB-c and Hsp27 bind to misfolded or oligomeric forms of the client proteins at early stages of aggregation, resulting in the formation of soluble sHsp-client complexes. Stoichiometric analysis of these complexes revealed that additional αB-c subunits accumulate onto pre-existing sHsp-client complexes to form larger species - this does not occur to the same extent for Hsp27. Instead, Hsp27-client interactions tend to be more transient than those of αB-c. Elucidating these mechanisms of sHsp function is crucial to our understanding of how these molecular chaperones act to inhibit protein aggregation and maintain cellular proteostasis.
Collapse
Affiliation(s)
- Lauren Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dezerae Cox
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Bailey Skewes
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Jami KM, Farb DC, Osumi KM, Shafer CC, Criscione S, Murray DT. Small heat shock protein HSPB8 interacts with a pre-fibrillar TDP43 low complexity domain species to delay fibril formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635368. [PMID: 39974920 PMCID: PMC11838303 DOI: 10.1101/2025.01.28.635368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The loss of cellular proteostasis through aberrant stress granule formation is implicated in neurodegenerative diseases. Stress granules are formed by biomolecular condensation involving protein-protein and protein-RNA interactions. These assemblies are protective, but can rigidify, leading to amyloid-like fibril formation, a hallmark of the disease pathology. Key proteins dictating stress granule formation and disassembly, such as TDP43, contain low-complexity (LC) domains that drive fibril formation. HSPB8, a small heat shock protein, plays a critical role modulating stress granule fluidity, preventing aggregation and promoting degradation of misfolded proteins. We examined the interaction between HSPB8 and the TDP43 LC using thioflavin T (ThT) and fluorescence polarization (FP) aggregation assays, fluorescence microscopy and photobleaching experiments, and crosslinking mass spectrometry (XL-MS). Our results indicate that HSPB8 delays TDP43 LC aggregation through domain-specific interactions with fibril nucleating species, without affecting fibril elongation rates. These findings provide mechanistic insight into how ATP-independent chaperones mediate LC domain aggregation and provide a basis for investigating how the TDP43 LC subverts chaperone activity in neurodegenerative disease.
Collapse
Affiliation(s)
- Khaled M. Jami
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Daniel C. Farb
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Kayla M. Osumi
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Catelynn C. Shafer
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Sophie Criscione
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dylan T. Murray
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
5
|
Beeg M, Rocutto B, Battocchio E, Dacomo L, Corbelli A, Fiordaliso F, Balducci C, Gobbi M. The Detection of Toxic Amyloid-β Fibril Fragments Through a Surface Plasmon Resonance Immunoassay. Int J Mol Sci 2024; 25:13020. [PMID: 39684731 DOI: 10.3390/ijms252313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β1-42 (Aβ42) forms highly stable and insoluble fibrillar structures, representing the principal components of the amyloid plaques present in the brain of Alzheimer's disease (AD) patients. The involvement of Aβ42 in AD-associated neurodegeneration has also been demonstrated, in particular for smaller and soluble aggregates (oligomers). Based on these findings and on genetic evidence, Aβ42 aggregates are considered key players in the pathogenesis of AD and targets for novel therapies. Different approaches are currently used to detect the various aggregation states of Aβ peptide, including spectrophotometric methods, imaging techniques, and immunoassays, but all of these have specific limitations. To overcome them, we have recently exploited the peculiar properties of surface plasmon resonance (SPR) to develop an immunoassay capable of selectively detecting monomers and oligomers, discriminating them also from bigger fibrils in a mixture of different aggregated species, without any manipulation of the solution. In the present study, we extended these previous studies, showing that the SPR-based immunoassay makes it possible to unveil the fibril fragmentation induced mechanically, a result difficult to be conveniently and reliably assessed with other approaches. Moreover, we show that SPR-recognized fibril fragments are more toxic than the larger fibrillar structures, suggesting the relevance of the proposed SPR-based immunoassay.
Collapse
Affiliation(s)
- Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Beatrice Rocutto
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Elisabetta Battocchio
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Letizia Dacomo
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Claudia Balducci
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
6
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
7
|
Zhang L, Zhang N, Pang C. The mechanistic interaction, aggregation and neurotoxicity of α-synuclein after interaction with glycyrrhizic acid: Modulation of synucleinopathies. Int J Biol Macromol 2024; 267:131423. [PMID: 38583832 DOI: 10.1016/j.ijbiomac.2024.131423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.
Collapse
Affiliation(s)
- Luyang Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China
| | - Na Zhang
- Medical Education Research Center, Shenyang Medical College, Shenyang 110000, China
| | - Chao Pang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
8
|
Huang F, Wang Y, Zhang Y, Wang C, Lian J, Ding F, Sun Y. Dissecting the Self-assembly Dynamics of Imperfect Repeats in α-Synuclein. J Chem Inf Model 2023; 63:3591-3600. [PMID: 37253119 PMCID: PMC10363412 DOI: 10.1021/acs.jcim.3c00533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pathological aggregation of α-synuclein (αS) into amyloid fibrils is the hallmark of Parkinson's disease (PD). The self-assembly and membrane interactions of αS are mainly governed by the seven imperfect 11-residue repeats of the XKTKEGVXXXX motif around residues 1-95. However, the particular role of each repeat in αS fibrillization remains unclear. To answer this question, we studied the aggregation dynamics of each repeat with up to 10 peptides in silico by conducting multiple independent micro-second atomistic discrete molecular dynamics simulations. Our simulations revealed that only repeats R3 and R6 readily self-assembled into β-sheet-rich oligomers, while the other repeats remained as unstructured monomers with weak self-assembly and β-sheet propensities. The self-assembly process of R3 featured frequent conformational changes with β-sheet formation mainly in the non-conserved hydrophobic tail, whereas R6 spontaneously self-assembled into extended and stable cross-β structures. These results of seven repeats are consistent with their structures and organization in recently solved αS fibrils. As the primary amyloidogenic core, R6 was buried inside the central cross-β core of all αS fibrils, attracting the hydrophobic tails of adjacent R4, R5, and R7 repeats forming β-sheets around R6 in the core. Further away from R6 in the sequence but with a moderate amyloid aggregation propensity, the R3 tail could serve as a secondary amyloidogenic core and form independent β-sheets in the fibril. Overall, our results demonstrate the critical role of R3 and R6 repeats in αS amyloid aggregation and suggest their potential as targets for the peptide-based and small-molecule amyloid inhibitors.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
9
|
Schneider MM, Scheidt T, Priddey AJ, Xu CK, Hu M, Meisl G, Devenish SRA, Dobson CM, Kosmoliaptsis V, Knowles TPJ. Microfluidic antibody affinity profiling of alloantibody-HLA interactions in human serum. Biosens Bioelectron 2023; 228:115196. [PMID: 36921387 DOI: 10.1016/j.bios.2023.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Antibody profiling is a fundamental component of understanding the humoral response in a wide range of disease areas. Most currently used approaches operate by capturing antibodies onto functionalised surfaces. Such measurements of surface binding are governed by an overall antibody titre, while the two fundamental molecular parameters, antibody affinity and antibody concentration, are challenging to determine individually from such approaches. Here, by applying microfluidic diffusional sizing (MDS), we show how we can overcome this challenge and demonstrate reliable quantification of alloantibody binding affinity and concentration of alloantibodies binding to Human Leukocyte Antigens (HLA), an extensively used clinical biomarker in organ transplantation, both in buffer and in crude human serum. Capitalising on the ability to vary both serum and HLA concentrations during MDS, we show that both affinity and concentration of HLA-specific antibodies can be determined directly in serum when neither of these parameters is known. Finally, we provide proof of principle in clinical transplant patient sera that our assay enables differentiation of alloantibody reactivity against HLA proteins of highly similar structure, providing information not attainable through currently available techniques. These results outline a path towards detection and in-depth profiling of humoral immunity and may enable further insights into the clinical relevance of antibody reactivity in clinical transplantation and beyond.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tom Scheidt
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ashley J Priddey
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Mengsha Hu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge, CB1 8DH, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
10
|
Chen G, Leppert A, Poska H, Nilsson HE, Alvira CP, Zhong X, Koeck P, Jegerschöld C, Abelein A, Hebert H, Johansson J. Short hydrophobic loop motifs in BRICHOS domains determine chaperone activity against amorphous protein aggregation but not against amyloid formation. Commun Biol 2023; 6:497. [PMID: 37156997 PMCID: PMC10167226 DOI: 10.1038/s42003-023-04883-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Harriet E Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | | | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Philip Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Caroline Jegerschöld
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
11
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
12
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
13
|
McBride JM, Eckmann JP, Tlusty T. General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model. Mol Biol Evol 2022; 39:msac217. [PMID: 36208205 PMCID: PMC9641994 DOI: 10.1093/molbev/msac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein-ligand interactions. The model shows that there are many routes to achieving molecular discrimination-by varying degrees of flexibility and shape/chemistry complementarity-but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of "why are proteins so big?". A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
| | - Jean-Pierre Eckmann
- Département de Physique Théorique and Section de Mathématiques, University of Geneva, Geneva, Switzerland
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
14
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Tugaeva KV, Kurganov BI. Effect of Betaine and Arginine on Interaction of αB-Crystallin with Glycogen Phosphorylase b. Int J Mol Sci 2022; 23:3816. [PMID: 35409175 PMCID: PMC8998655 DOI: 10.3390/ijms23073816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (PPIs) play an important role in many biological processes in a living cell. Among them chaperone-client interactions are the most important. In this work PPIs of αB-crystallin and glycogen phosphorylase b (Phb) in the presence of betaine (Bet) and arginine (Arg) at 48 °C and ionic strength of 0.15 M were studied using methods of dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation. It was shown that Bet enhanced, while Arg reduced both the stability of αB-crystallin and its adsorption capacity (AC0) to the target protein at the stage of aggregate growth. Thus, the anti-aggregation activity of αB-crystallin increased in the presence of Bet and decreased under the influence of Arg, which resulted in inhibition or acceleration of Phb aggregation, respectively. Our data show that chemical chaperones can influence the tertiary and quaternary structure of both the target protein and the protein chaperone. The presence of the substrate protein also affects the quaternary structure of αB-crystallin, causing its disassembly. This is inextricably linked to the anti-aggregation activity of αB-crystallin, which in turn affects its PPI with the target protein. Thus, our studies contribute to understanding the mechanism of interaction between chaperones and proteins.
Collapse
Affiliation(s)
- Tatiana B. Eronina
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia; (V.V.M.); (N.A.C.); (K.V.T.); (B.I.K.)
| | | | | | | | | |
Collapse
|
15
|
Ryder BD, Wydorski PM, Hou Z, Joachimiak LA. Chaperoning shape-shifting tau in disease. Trends Biochem Sci 2022; 47:301-313. [PMID: 35045944 DOI: 10.1016/j.tibs.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
Many neurodegenerative diseases, including Alzheimer's, originate from the conversion of proteins into pathogenic conformations. The microtubule-associated protein tau converts into β-sheet-rich amyloid conformations, which underlie pathology in over 25 related tauopathies. Structural studies of tau amyloid fibrils isolated from human tauopathy tissues have revealed that tau adopts diverse structural polymorphs, each linked to a different disease. Molecular chaperones play central roles in regulating tau function and amyloid assembly in disease. New data supports the model that chaperones selectively recognize different conformations of tau to limit the accumulation of proteotoxic species. The challenge now is to understand how chaperones influence disease processes across different tauopathies, which will help guide the development of novel conformation-specific diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Bryan D Ryder
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pawel M Wydorski
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqiang Hou
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Diffusional microfluidics for protein analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|