1
|
Liu D, Qin K, Hong C, Huang W, Li W, Lian P, Li M, Chen H, Liu X. Isolation and Characterization of a Novel Lytic Phage N22 and Its Effect on Drug-Resistant Klebsiella Pneumoniae. Infect Drug Resist 2025; 18:1807-1818. [PMID: 40231317 PMCID: PMC11995918 DOI: 10.2147/idr.s515363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Background Klebsiella pneumoniae (KP) infections present a significant clinical challenge and are frequently associated with elevated drug resistance. The use of phage therapy has resurged in response to escalating antibiotic resistance. This study aimed to address the multidrug resistance crisis in intensive care units by exploring the use of ceftazidime/avibactam (CAZ/AVI), a widely used clinical antimicrobial agent, in conjunction with phage therapy. Materials and Methods We screened a clinical strain of KP from ICU and successfully isolated phage N22 from hospital wastewater. We conducted an in-depth analysis of the physiological and biochemical properties of phage N22 and determined its optimal multiplicity of infection with the clinical KP strain. The inhibitory effects of phage N22 in combination with CAZ/AVI on biofilm formation were investigated. Comparative efficacies of these combinations were evaluated using a Galleria mellonella (G. mellonella) model. Results Phage N22 inhibited KP biofilm formation. The impact of varying phage N22 concentrations when used alongside CAZ/AVI was examined, and the combination of phage N22 and CAZ/AVI was more effective against KP than CAZ/AVI alone. Conclusion This study provides a preliminary investigation into the effects of combining CAZ/AVI with phage therapy, highlighting its potential significance in developing novel therapeutic strategies for bacterial infections resistant to CAZ/AVI. The findings underscore the importance of advancing highly effective phage agents as alternative treatment modalities for patients with infections refractory to conventional antibiotics.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Kunhao Qin
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji’an, 343009, People’s Republic of China
| | - Chengying Hong
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Wei Huang
- Department of Laboratory Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Wei Li
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Puqiao Lian
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Mengyao Li
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Huaisheng Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| |
Collapse
|
2
|
Yu Y, Wang M, Ju L, Li M, Zhao M, Deng H, Rensing C, Yang QE, Zhou S. Phage-mediated virulence loss and antimicrobial susceptibility in carbapenem-resistant Klebsiella pneumoniae. mBio 2025; 16:e0295724. [PMID: 39714187 PMCID: PMC11796411 DOI: 10.1128/mbio.02957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteriophages, known for their ability to kill bacteria, are hampered in their effectiveness because bacteria are able to rapidly develop resistance, thereby posing a significant challenge for the efficacy of phage therapy. The impact of evolutionary trajectories on the long-term success of phage therapy remains largely unclear. Herein, we conducted evolutionary experiments, genomic analysis, and CRISPR-mediated gene editing, to illustrate the evolutionary trajectory occurring between phages and their hosts. Our results illustrate the ongoing "arms race" between a lytic phage and its host, a carbapenem-resistant Klebsiella pneumoniae clinical strain Kp2092, suggesting their respective evolutionary adaptations that shape the efficacy of phage therapy. Specifically, Kp2092 rapidly developed resistance to phages through mutations in a key phage receptor (galU) and bacterial membrane defenses such as LPS synthesis, however, this evolution coincides with unexpected benefits. Evolved bacterial clones not only exhibited increased sensitivity to clinically important antibiotics but also displayed a loss of virulence in an in-vivo model. In contrast, phages evolved under the selection pressure against Kp2092 mutants and exhibited enhanced bacterial killing potency, targeting mutations in phage tail proteins gp12 and gp17. These parallel evolutionary trajectories suggest a common genetic mechanism driving adaptation, ultimately favoring the efficacy of phage therapy. Overall, our findings highlight the potential of phages not only as agents for combating bacterial resistance, but also a driver of evolution outcomes that could lead to more favorable clinical outcomes in the treatment of multidrug resistance pathogens.IMPORTANCECarbapenem-resistant Klebsiella pneumoniae represents one of the leading pathogens for infectious diseases. With traditional antibiotics often being ineffective, phage therapy has emerged as a promising alternative. However, phage predation imposes a strong evolutionary pressure on the rapid evolution of bacteria, challenging treatment efficacy. Our findings illustrate how co-evolution enhances phage lytic capabilities through accumulated mutations in the tail proteins gp12 and gp17, while simultaneously reducing bacterial virulence and antibiotic resistance. These insights advance our understanding of phage-host interactions in clinical settings, potentially inspiring new approaches akin to an "arms race" model to combat multidrug-resistant crises effectively.
Collapse
Affiliation(s)
- Yanshuang Yu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liuying Ju
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minchun Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Zhao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiu E. Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Zhao M, Li H, Gan D, Wang M, Deng H, Yang QE. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae. mSystems 2024; 9:e0060724. [PMID: 39166877 PMCID: PMC11406915 DOI: 10.1128/msystems.00607-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
The global rise of antibiotic resistance has renewed interest in phage therapy, as an alternative to antibiotics to eliminate multidrug-resistant (MDR) bacterial pathogens. However, optimizing the broad-spectrum efficacy of phage therapy remains a challenge. In this study, we addressed this issue by employing strategies to improve antimicrobial efficacy of phage therapy against MDR Klebsiella pneumoniae strains, which are notorious for their resistance to conventional antibiotics. This includes the selection of broad host range phages, optimization of phage formulation, and combinations with last-resort antibiotics. Our findings unveil that having a broad host range was a dominant trait of isolated phages, and increasing phage numbers in combination with antibiotics significantly enhanced the suppression of bacterial growth. The decreased incidence of bacterial infection was explained by a reduction in pathogen density and emergence of bacterial resistance. Furthermore, phage-antibiotic synergy (PAS) demonstrated considerable broad-spectrum antibacterial potential against different clades of clinical MDR K. pneumoniae pathogens. The improved treatment outcomes of optimized PAS were also evident in a murine model, where mice receiving optimized PAS therapy demonstrated a reduced bacterial burden in mouse tissues. Taken together, these findings offer an important development in optimizing PAS therapy and its efficacy in the elimination of MDR K. pneumoniae pathogens. IMPORTANCE The worldwide spread of antimicrobial resistance (AMR) has posed a great challenge to global public health. Phage therapy has become a promising alternative against difficult-to-treat pathogens. One important goal of this study was to optimize the therapeutic efficiency of phage-antibiotic combinations, known as phage-antibiotic synergy (PAS). Through comprehensive analysis of the phenotypic and genotypic characteristics of a large number of CRKp-specific phages, we developed a systematic model for phage cocktail combinations. Crucially, our finding demonstrated that PAS treatments not only enhance the bactericidal effects of colistin and tigecycline against multidrug-resistant (MDR) K. pneumoniae strains in in vitro and in vivo context but also provide a robust response when antibiotics fail. Overall, the optimized PAS therapy demonstrates considerable potential in combating diverse K. pneumoniae pathogens, highlighting its relevance as a strategy to mitigate antibiotic resistance threats effectively.
Collapse
Affiliation(s)
- Mengshi Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongru Li
- Department of Infectious Disease, Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou University affiliated Provincial Hospital,, Fuzhou, China
| | - Dehao Gan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiu E Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Parker DR, Nugen SR. Bacteriophage-Based Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:393-410. [PMID: 39018352 DOI: 10.1146/annurev-anchem-071323-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Bacteriophages, which are viral predators of bacteria, have evolved to efficiently recognize, bind, infect, and lyse their host, resulting in the release of tens to hundreds of propagated viruses. These abilities have attracted biosensor developers who have developed new methods to detect bacteria. Recently, several comprehensive reviews have covered many of the advances made regarding the performance of phage-based biosensors. Therefore, in this review, we first describe the landscape of phage-based biosensors and then cover advances in other aspects of phage biology and engineering that can be used to make high-impact contributions to biosensor development. Many of these advances are in fields adjacent to analytical chemistry such as synthetic biology, machine learning, and genetic engineering and will allow those looking to develop phage-based biosensors to start taking alternative approaches, such as a bottom-up design and synthesis of custom phages with the singular task of detecting their host.
Collapse
Affiliation(s)
- David R Parker
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
5
|
Vu TN, Clark JR, Jang E, D'Souza R, Nguyen LP, Pinto NA, Yoo S, Abadie R, Maresso AW, Yong D. Appelmans protocol - A directed in vitro evolution enables induction and recombination of prophages with expanded host range. Virus Res 2024; 339:199272. [PMID: 37981215 PMCID: PMC10730860 DOI: 10.1016/j.virusres.2023.199272] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) present significant healthcare challenges due to limited treatment options. Bacteriophage (phage) therapy offers potential as an alternative treatment. However, the high host specificity of phages poses challenges for their therapeutic application. To broaden the phage spectrum, laboratory-based phage training using the Appelmans protocol was employed in this study. As a result, the protocol successfully expanded the host range of a phage cocktail targeting CRAB. Further analysis revealed that the expanded host range phages isolated from the output cocktail were identified as recombinant derivatives originating from prophages induced from encountered bacterial strains. These findings provide valuable genetic insights into the protocol's mechanism when applied to phages infecting A. baumannii strains that have never been investigated before. However, it is noteworthy that the expanded host range phages obtained from this protocol exhibited limited stability, raising concerns about their suitability for therapeutic purposes.
Collapse
Affiliation(s)
- Thao Nguyen Vu
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Justin Ryan Clark
- Tailored Antibacterials and Innovative Laboratories for Phage Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, US
| | - Eris Jang
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea; University of Georgia Terry College of Business, Athens, GA, US
| | - Roshan D'Souza
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Le Phuong Nguyen
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, US
| | - Naina Adren Pinto
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seongjun Yoo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ricardo Abadie
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Anthony William Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, US
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Makky S, Abdelrahman F, Rezk N, Easwaran M, El-Shibiny A. Phages for treatment Pseudomonas aeruginosa infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:1-19. [PMID: 37770166 DOI: 10.1016/bs.pmbts.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
7
|
Oyejobi GK, Zhang X, Xiong D, Ogolla F, Xue H, Wei H. Phage-bacterial evolutionary interactions: experimental models and complications. Crit Rev Microbiol 2023; 49:283-296. [PMID: 35358006 DOI: 10.1080/1040841x.2022.2052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phage treatment of bacterial infections has offered some hope even as the crisis of antimicrobial resistance continues to be on the rise. However, bacterial resistance to phage is another looming challenge capable of undermining the effectiveness of phage therapy. Moreover, the consideration of including phage therapy in modern medicine calls for more careful research around every aspect of phage study. In an attempt to adequately prepare for the events of phage resistance, many studies have attempted to experimentally evolve phage resistance in different bacterial strains, as well as train phages to evolve counter-infectivity of resistant bacterial mutants, in view of answering such questions as coevolutionary dynamics between phage and bacteria, mechanisms of phage resistance, fitness costs of phage resistance on bacteria, etc. In this review, we summarised many such studies and by careful examination, highlighted critical issues to the outcome of phage therapy. We also discuss the insufficiency of many of these in vitro studies to represent actual disease conditions during phage application, alongside other complications that exist in phage-bacterial evolutionary interactions. Conclusively, we present the exploitation of phage-bacterial interactions for successful infection managements, as well as some future perspectives to direct phage research.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,Organization of African Academic Doctors, Nairobi, Kenya
| | - Xiaoxu Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyan Xiong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Organization of African Academic Doctors, Nairobi, Kenya.,Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Heng Xue
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Nairobi, Kenya
| |
Collapse
|
8
|
Grzybowski A, Żaczek M, Górski A, Weber-Dąbrowska B, Międzybrodzki R. Bronisława Fejgin (1883-1943): Forgotten Important Contributor to International Microbiology and Phage Therapy. Antibiotics (Basel) 2021; 10:1353. [PMID: 34827291 PMCID: PMC8614871 DOI: 10.3390/antibiotics10111353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bronisława Brandla Fejgin was a Polish-born Jewish female physician. Among Fejgin's numerous articles in the field of microbiology, her later work was almost entirely devoted to phage research. Although not equally famous as the phage pioneers from Western Europe, F.W. Twort and F. d'Herelle, Fejgin's contribution to phage research deserves proper recognition. Her studies on phages resulted in the publication of numerous original scientific reports. These articles, published mostly in French, constitute an important source of information and expertise on early attempts towards therapeutic use of phages in humans. The interwar period marks the most intense years in Bronisława Fejgin's research activity, brutally interrupted by her death in the Warsaw Ghetto in 1943. Her microbiology contributions have not been analyzed so far. Thus, the aim of this article is to fill the existing gap in the history of microbiology and phage therapy.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Institute for Research in Ophthalmology, 60-836 Poznań, Poland;
- Department of Ophthalmology, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Teaching Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|