1
|
Chen Y, Hou X, Zhou H, Lv T, Han R, Yang Z, Zheng W, Bai F. Cortical plasticity, therapeutic effects, and neural circuit activity of angular gyrus rTMS in amnestic mild cognitive impairment. Clin Neurophysiol 2025; 174:198-211. [PMID: 40305881 DOI: 10.1016/j.clinph.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/23/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE This study aimed to explore the neurophysiological mechanisms behind the improvement of cognitive functions through angular gyrus repetitive transcranial magnetic stimulation (rTMS) in patients with amnestic mild cognitive impairment (aMCI) by assessing cortical plasticity, underscoring the predictive value of cortical plasticity for clinical outcomes. METHODS Twenty-seven aMCI patients were allocated to the intervention and control groups for 4 weeks of 20 Hz rTMS of the angular gyrus. Long-term potentiation (LTP)-like cortical plasticity in the motor M1 area, in conjunction with neuropsychological tests and resting-state brain imaging, was used to investigate the mechanism behind angular gyrus rTMS. RESULTS At baseline, aMCI patients presented impaired LTP-like motor cortical plasticity related to cognitive damage. Following treatment with angular gyrus rTMS, a reversal in the impairment of this plasticity was observed. This improvement was associated with clinical efficacy in terms of cognitive function and changes in the resting-state brain network activities of the sensorimotor, default mode, and frontoparietal networks. CONCLUSIONS Clinical symptoms are alleviated by angular gyrus rTMS, and damaged cortex plasticity also shows signs of improvement, potentially linked to transcortical neural activity across multiple brain regions in aMCI patients. Cortical plasticity induced by transcranial magnetic stimulation has potential value in predicting the clinical outcomes of neuromodulation. SIGNIFICANCE Motor cortex plasticity may be related to cognitive function and therapeutic effects in aMCI patients and may be modulated by angular gyrus transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huijuan Zhou
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruichen Han
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu University, Nanjing, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu University, Nanjing, China; Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Zareen N, Yung H, Kaczetow W, Glattstein A, Mazalkova E, Alexander H, Chen L, Parra LC, Martin JH. Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation. Proc Natl Acad Sci U S A 2024; 121:e2408508121. [PMID: 39536089 PMCID: PMC11588127 DOI: 10.1073/pnas.2408508121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Electrical motor cortex stimulation can produce corticospinal system plasticity and enhance motor function after injury. We investigate molecular mechanisms of structural and physiological plasticity following electrical neuromodulation, focusing on identifying molecular predictors, or biomarkers, for durable plasticity. We used two neuromodulation protocols, repetitive multipulse stimulation (rMPS) and patterned intermittent theta burst stimulation (iTBS), incorporating different stimulation durations and follow-up periods. We compared neuromodulation efficacy in promoting corticospinal tract (CST) sprouting, motor cortex muscle evoked potential (MEP) LTP-like plasticity, and their associated molecular underpinnings. Only iTBS produced CST sprouting after short-term neuromodulation (1 d of stimulation; 9-d survival for sprouting expression); both iTBS and rMPS produced sprouting with long-term (10-d) neuromodulation. Significant mTOR signaling activation and phosphatase and tensin homolog (PTEN) protein deactivation predicted axon growth across all neuromodulation conditions that produced significant sprouting. Both neuromodulation protocols, regardless of duration, were effective in producing MEP enhancement. However, persistent LTP-like enhancement of MEPs at 30 d was only produced by long-term iTBS. Statistical modeling suggests that Stat3 signaling is the key mediator of MEP enhancement. Cervical spinal cord injury (SCI) alone did not affect baseline molecular signaling. Whereas iTBS and rMPS after SCI produced strong mTOR activation and PTEN deactivation, only iTBS produced Stat3 activation. Our findings support differential molecular biomarkers for neuromodulation-dependent structural and physiological plasticity and show that motor cortex epidural neuromodulation produces molecular changes in neurons that support axonal growth after SCI. iTBS may be more suitable for repair after SCI because it promotes molecular signaling for both CST growth and MEP plasticity.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Halley Yung
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Walter Kaczetow
- Department of Educational Psychology, Graduate Center of the City University of New York, New York, NY10016
| | - Aliya Glattstein
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Ekaterina Mazalkova
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Liang Chen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Lucas C. Parra
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY10031
| | - John H. Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY10016
| |
Collapse
|
3
|
Urbin MA, Lafe CW, Bautista ME, Wittenberg GF, Simpson TW. Effects of noninvasive neuromodulation targeting the spinal cord on early learning of force control by the digits. CNS Neurosci Ther 2024; 30:e14561. [PMID: 38421127 PMCID: PMC10851178 DOI: 10.1111/cns.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Charley W. Lafe
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Manuel E. Bautista
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - George F. Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tyler W. Simpson
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Lee KZ, Vinit S. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat. Spine J 2024; 24:352-372. [PMID: 37774983 DOI: 10.1016/j.spinee.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND CONTEXT Magnetic stimulation can noninvasively modulate the neuronal excitability through different stimulatory patterns. PURPOSE The present study hypothesized that trans-spinal magnetic stimulation with intermittent theta burst stimulatory pattern can modulate respiratory motor outputs in a pre-clinical rat model of cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS The effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity was assessed in adult rats with unilateral cervical spinal cord contusion at 2 weeks postinjury. RESULTS The results demonstrated that unilateral cervical spinal cord contusion significantly attenuated the inspiratory activity and motor evoked potential of the diaphragm. Trans-spinal magnetic intermittent theta burst stimulation significantly increased the inspiratory activity of the diaphragm in cervical spinal cord contused rats. Inspiratory bursting was also recruited by trans-spinal magnetic intermittent theta burst stimulation in the rats without diaphragmatic activity after cervical spinal cord injury. In addition, trans-spinal magnetic intermittent theta burst stimulation is associated with increases in oxygen consumption and carbon dioxide production. CONCLUSIONS These results suggest that trans-spinal magnetic intermittent theta burst stimulation can induce respiratory neuroplasticity. CLINICAL SIGNIFICANCE We propose that trans-spinal theta burst magnetic stimulation may be considered a potential rehabilitative strategy for improving the respiratory activity after cervical spinal cord injury. This will require future clinical study.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 804 Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 9F, First Teaching Building, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
5
|
Yang L, Martin JH. Effects of motor cortex neuromodulation on the specificity of corticospinal tract spinal axon outgrowth and targeting in rats. Brain Stimul 2023; 16:759-771. [PMID: 37094762 PMCID: PMC10501380 DOI: 10.1016/j.brs.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Neural activity helps construct neural circuits during development and this function is leveraged by neuromodulation protocols to promote connectivity and repair in maturity. Neuromodulation targeting the motor cortex (MCX) strengthens connections for evoking muscle contraction (MEPs). Mechanisms include promoting local MCX and corticospinal tract (CST) synaptic efficacy and also axon terminal structural changes. OBJECTIVE In this study, we address the question of potential causality between neuronal activation and the neuronal structural response. METHODS We used patterned optogenetic activation (ChR2-EYFP), daily for 10-days, to deliver intermittent theta burst stimulation (iTBS) to activate MCX neurons within the forelimb representation in healthy rats, while differentiating them from neurons in the same population that were not activated. We used chemogenetic DREADD activation to produce a daily period of non-patterned neuronal activation. RESULTS We found a significant increase in CST axon length, axon branching, contacts targeted to a class of premotor interneuron (Chx10), as well as projections into the motor pools in the ventral horn in optically activated but not neighboring non-activated neurons. A period of 2-h of continuous activation daily for 10 days using DREADD chemogenetic activation with systemic clozapine N-oxide (CNO) administration also increased CST axon length and branching, but not the ventral horn and Chx10 targeting effects. Both patterned optical and chemogenetic activation reduced MCX MEP thresholds. CONCLUSION Our findings show that targeting of CST axon sprouting is dependent on patterned activation, but that CST spinal axon outgrowth and branching are not. Our optogenetic findings, by distinguishing optically activated and non-activated CST axons, suggests that the switch for activity-dependent axonal outgrowth is neuron-intrinsic.
Collapse
Affiliation(s)
- Lillian Yang
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
6
|
Sharma M, Bhaskar V, Yang L, FallahRad M, Gebodh N, Zhang T, Esteller R, Martin J, Bikson M. Novel Evoked Synaptic Activity Potentials (ESAPs) Elicited by Spinal Cord Stimulation. eNeuro 2023; 10:ENEURO.0429-22.2023. [PMID: 37130780 PMCID: PMC10198607 DOI: 10.1523/eneuro.0429-22.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Spinal cord stimulation (SCS) evokes fast epidural evoked compound action potential (ECAP) that represent activity of dorsal column axons, but not necessarily a spinal circuit response. Using a multimodal approach, we identified and characterized a delayed and slower potential evoked by SCS that reflects synaptic activity within the spinal cord. Anesthetized female Sprague Dawley rats were implanted with an epidural SCS lead, epidural motor cortex stimulation electrodes, an epidural spinal cord recording lead, an intraspinal penetrating recording electrode array, and intramuscular electromyography (EMG) electrodes in the hindlimb and trunk. We stimulated the motor cortex or the epidural spinal cord and recorded epidural, intraspinal, and EMG responses. SCS pulses produced characteristic propagating ECAPs (composed of P1, N1, and P2 waves with latencies <2 ms) and an additional wave ("S1") starting after the N2. We verified the S1-wave was not a stimulation artifact and was not a reflection of hindlimb/trunk EMG. The S1-wave has a distinct stimulation-intensity dose response and spatial profile compared with ECAPs. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective competitive antagonist of AMPA receptors (AMPARs)] significantly diminished the S1-wave, but not ECAPs. Furthermore, cortical stimulation, which did not evoke ECAPs, produced epidurally detectable and CNQX-sensitive responses at the same spinal sites, confirming epidural recording of an evoked synaptic response. Finally, applying 50-Hz SCS resulted in dampening of S1-wave but not ECAPs. Therefore, we hypothesize that the S1-wave is synaptic in origin, and we term the S1-wave type responses: evoked synaptic activity potentials (ESAPs). The identification and characterization of epidurally recorded ESAPs from the dorsal horn may elucidate SCS mechanisms.
Collapse
Affiliation(s)
- Mahima Sharma
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Vividha Bhaskar
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Lillian Yang
- Department of Molecular, Cellular and Biomedical Sciences, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Mohamad FallahRad
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Nigel Gebodh
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Tianhe Zhang
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA 91355
| | - Rosana Esteller
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA 91355
| | - John Martin
- Department of Molecular, Cellular and Biomedical Sciences, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| |
Collapse
|
7
|
Feng X, Wang T, Jiang Y, Liu Y, Yang H, Duan Z, Ji L, Wei J. Cerebral Theta-Burst Stimulation Combined with Physiotherapy in Patients with Incomplete Spinal Cord Injury: A Pilot Randomized Controlled Trial. J Rehabil Med 2023; 55:jrm00375. [PMID: 36779636 PMCID: PMC9941982 DOI: 10.2340/jrm.v55.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE To measure the effects of cerebral intermittent theta-burst stimulation with physiotherapy on lower extremity motor recovery in patients with incomplete spinal cord injury. DESIGN Randomized, double-blinded, sham-controlled trial. SUBJECTS Adults with incomplete spinal cord injury. METHODS A total of 38 patients with incomplete spinal cord injury were randomized into either an intermittent theta-burst stimulation or a sham group. Both groups participated in physiotherapy 5 times per week for 9 weeks, and cerebral intermittent theta-burst stimulation or sham intermittent theta-burst stimulation was performed daily, immediately before physiotherapy. The primary outcomes were lower extremity motor score (LEMS), root-mean square (RMS), RMS of the quadriceps femoris muscle, walking speed (WS), and stride length (SL). Secondary outcomes comprised Holden Walking Ability Scale (HWAS) and modified Barthel Index (MBI). The outcomes were assessed before the intervention and 9 weeks after the start of the intervention. RESULTS Nine weeks of cerebral intermittent theta-burst stimulation with physiotherapy intervention resulted in improved recovery of lower extremity motor recovery in patients with incomplete spinal cord injury. Compared with baseline, the changes in LEMS, WS, SL, RMS, HWAS, and MBI were significant in both groups after intervention. The LEMS, WS, SL, RMS, HWAS, and MBI scores were improved more in the intermittent theta-burst stimulation group than in the sham group. CONCLUSION Cerebral intermittent theta-burst stimulation with physiotherapy promotes lower extremity motor recovery in patients with incomplete spinal cord injury. However, this study included a small sample size and lacked a comparison of the treatment effects of multiple stimulation modes, the further research will be required in the future.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China.
| | - Tingting Wang
- Department of Rehabilitation Medicine; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province; Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Yan Jiang
- Department of Rehabilitation Medicine
| | - Yi Liu
- Department of Rehabilitation Medicine
| | - Haifeng Yang
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Zongyu Duan
- Department of Rehabilitation Medicine, The Fuyang Hospital of Anhui Medical University, Fuyang City, Anhui Province, China
| | - Leilei Ji
- Department of Rehabilitation Medicine
| | - Juan Wei
- Department of Rehabilitation Medicine
| |
Collapse
|
8
|
Younger DS. Spinal cord motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:3-42. [PMID: 37620076 DOI: 10.1016/b978-0-323-98817-9.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spinal cord diseases are frequently devastating due to the precipitous and often permanently debilitating nature of the deficits. Spastic or flaccid paraparesis accompanied by dermatomal and myotomal signatures complementary to the incurred deficits facilitates localization of the insult within the cord. However, laboratory studies often employing disease-specific serology, neuroradiology, neurophysiology, and cerebrospinal fluid analysis aid in the etiologic diagnosis. While many spinal cord diseases are reversible and treatable, especially when recognized early, more than ever, neuroscientists are being called to investigate endogenous mechanisms of neural plasticity. This chapter is a review of the embryology, neuroanatomy, clinical localization, evaluation, and management of adult and childhood spinal cord motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
9
|
Chen M, Chen Z, Xiao X, Zhou L, Fu R, Jiang X, Pang M, Xia J. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury. IBRO Neurosci Rep 2022; 14:185-194. [PMID: 36824667 PMCID: PMC9941655 DOI: 10.1016/j.ibneur.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Collapse
Key Words
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- BDNF, brain-derived neurotrophic factor
- BMIs, brain-machine interfaces
- CPG, central pattern generator
- CST, corticospinal tract
- Corticospinal motor circuitry
- DBS, deep brain stimulation
- ESS, epidural spinal stimulation
- MEPs, motor-evoked potentials
- NHPs, non-human primates
- NMDARs, N-methyl-d-aspartate receptors
- Neuromodulation
- Neuroplasticity
- PSNs, propriospinal neurons
- Rehabilitation
- SCI, spinal cord injury
- STDP, spike timing-dependent plasticity
- Silent synapses
- Spinal cord injury
- TBS, theta burst stimulation
- TMS, transcranial magnetic stimulation
- TrkB, tropomyosin-related kinase B
- cTBS, continuous TBS
- iTBS, intermittent TBS
- mTOR, mammalian target of rapamycin
- rTMS, repetitive TMS
- tDCS, transcranial direct current stimulation
- tcSCS, transcutaneous spinal cord stimulation
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Xian Jiang
- Institute of Neurological and Psychiatric Disorder, Shenzhen Bay laboratory, Shenzhen, Guangdong 518000, China
| | - Mao Pang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong 510630, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong 510970, China,Corresponding author.
| |
Collapse
|
10
|
Amer A, Martin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat. Brain Stimul 2022; 15:1013-1022. [PMID: 35850438 PMCID: PMC10164459 DOI: 10.1016/j.brs.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements. OBJECTIVE We determined if brief MCX muscle evoked potential (MEP) enhancement produced by intermittent theta burst stimulation (iTBS) can be converted into a longer and structurally durable form of response enhancement with repeated daily and longer-term application. METHODS Electrical iTBS was delivered through an implanted MCX epidural electrode and MEPs were recorded using implanted EMG electrodes in awake naïve rats. MCX activity was modulated further using chemogenetic (DREADDs) excitation and inhibition. Corticospinal tract (CST) axons were traced and immunochemistry used to measure CST synapses. RESULTS A single MCX iTBS block (600 pulses) produced MEP LTP lasting ∼30-45 min. Concatenating five iTBS blocks within a 30-min session produced MEP LTP lasting 24-48 h, which could be strengthened or weakened by bidirectional MCX activity modulation. Effect duration was not changed. Finally, daily induction of this persistent MEP LTP with daily iTBS for 10-days produced MEP enhancement outlasting the stimulation period by at least 10 days, and accompanied by CST axonal outgrowth and structural changes at the CST-spinal interneuron synapse. CONCLUSION Our findings inform the mechanisms of iTBS and provide a framework for designing neuromodulatory strategies to promote durable enhancement of cortical motor actions.
Collapse
Affiliation(s)
- Alzahraa Amer
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
The sudden loss of movement after spinal cord injury (SCI) is life-changing and is a major impetus to study spinal cord motor system plasticity and devise novel repair strategies. This review focuses on the motor cortex and the corticospinal tract, which are key to producing voluntary movements. The motor cortex projects directly to the spinal cord, via the corticospinal tract, and indirectly, via relays in the brain stem. With loss of the corticospinal tract after SCI, the indirect paths may bypass the injury and play an important role in voluntary control. In health and after injury, the spinal cord is a key site for activity-dependent neuroplasticity of the corticospinal system. Three kinds of activity-dependent plasticity have been identified: (1) corticospinal tract axon sprouting after electrical stimulation of the motor cortex; (2) synaptic competition between corticospinal tract and proprioceptive afferent fiber terminations; and (3) long-term potentiation (LTP) at the corticospinal tract-spinal interneuron synapse. SCI damages descending motor pathway connections and, in turn, triggers a loss of down-stream activity-dependent processes. This activity loss produces spinal interneuron degeneration and several activity-dependent maladaptive changes that underly hyperreflexia, spasticity, and spasms. Animal studies show that phasic electrical and tonic direct current stimulation can be used to supplement activity after SCI to reduce the activity-dependent degenerative and maladaptive changes. Importantly, when applied chronically neuromodulation recruits spinal neuroplasticity to improve function after SCI by promoting activity-dependent corticospinal axon sprouting and synapse formation. This helps establish new functional connections and strengthens spared connections. Combining neuromodulation to promote repair and motor rehabilitation to train circuits can most effectively promote motor recovery.
Collapse
Affiliation(s)
- John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, United States; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States.
| |
Collapse
|