1
|
Zhang XL, Liao ML, Ma CY, Ma LX, Huang QW, Dong YW. Phylogenetic history and temperature adaptation contribute to structural and functional stability of proteins in marine mollusks. Commun Biol 2025; 8:461. [PMID: 40113975 PMCID: PMC11926386 DOI: 10.1038/s42003-025-07881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Teasing apart the influences of phylogenetic history from thermal adaptation is a focal challenge in understanding the factors driving change in protein stability. This study conducted comprehensive comparative analyses between the phylogenetic relationships and functional/structural stabilities at protein and mRNA levels of cytosolic malate dehydrogenase (cMDH) orthologs of 41 marine mollusks living at widely different environmental temperatures. At the protein level, a significant negative correlation between adaptation temperature and heat-induced movements of the cMDH backbone was found. The movement fluctuation of individual residue varied similarly among cMDH orthologs. At the mRNA level, the free energy that occurs during the formation of the ensemble of mRNA secondary structure was significantly positively correlated with adaptation temperature. The fraction of guanine and cytosine increased with adaptation temperature. The proportion of variance in adaptation temperature that can be explained by the thermal stability (R2) was decreased after phylogenetic generalized least squares but was almost significant at both protein and mRNA levels (P < 0.05). Those analyses reveal the phylogenetic influence on the thermal adaptation of species. Our findings indicated that multi-level analysis of orthologous proteins should be considered alongside phylogenetic history to permit the development of a more comprehensive understanding of protein thermal adaptation.
Collapse
Affiliation(s)
- Xin-Lei Zhang
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Shandong Key Laboratory of Green Mariculture and Smart Fishery, Fisheries College, Ocean University of China, Qingdao, China
| | - Ming-Ling Liao
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.
- Shandong Key Laboratory of Green Mariculture and Smart Fishery, Fisheries College, Ocean University of China, Qingdao, China.
| | - Chao-Yi Ma
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Shandong Key Laboratory of Green Mariculture and Smart Fishery, Fisheries College, Ocean University of China, Qingdao, China
| | - Lin-Xuan Ma
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Shandong Key Laboratory of Green Mariculture and Smart Fishery, Fisheries College, Ocean University of China, Qingdao, China
| | - Qian-Wen Huang
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture of Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Shandong Key Laboratory of Green Mariculture and Smart Fishery, Fisheries College, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Li W, Bu M, Hu R, Jiang S, Chen L, Somero GN. Tissue-specific temperature dependence of RNA editing levels in zebrafish. BMC Biol 2023; 21:262. [PMID: 37981664 PMCID: PMC10659053 DOI: 10.1186/s12915-023-01738-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND RNA editing by adenosine deaminase acting on RNA (ADAR) occurs in all metazoans and fulfils several functions. Here, we examined effects of acclimation temperature (27 °C, 18 °C,13 °C) on editing patterns in six tissues of zebrafish (Danio rerio). RESULTS Sites and total amounts of editing differed among tissues. Brain showed the highest levels, followed by gill and skin. In these highly edited tissues, decreases in temperatures led to large increases in total amounts of editing and changes in specific edited sites. Gene ontology analysis showed both similarities (e.g., endoplasmic reticulum stress response) and differences in editing among tissues. The majority of edited sites were in transcripts of transposable elements and the 3'UTR regions of protein coding genes. By experimental validation, translation efficiency was directly related to extent of editing of the 3'UTR region of an mRNA. CONCLUSIONS RNA editing increases 3'UTR polymorphism and affects efficiency of translation. Such editing may lead to temperature-adaptive changes in the proteome through altering relative amounts of synthesis of different proteins.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Mengdi Bu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950, USA.
| |
Collapse
|
3
|
Gleason LU, Fekete FJ, Tanner RL, Dowd WW. Multi-omics reveals largely distinct transcript- and protein-level responses to the environment in an intertidal mussel. J Exp Biol 2023; 226:jeb245962. [PMID: 37902141 PMCID: PMC10690110 DOI: 10.1242/jeb.245962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Organismal responses to stressful environments are influenced by numerous transcript- and protein-level mechanisms, and the relationships between expression changes at these levels are not always straightforward. Here, we used paired transcriptomic and proteomic datasets from two previous studies from gill of the California mussel, Mytilus californianus, to explore how simultaneous transcript and protein abundance patterns may diverge under different environmental scenarios. Field-acclimatized mussels were sampled from two disparate intertidal sites; individuals from one site were subjected to three further treatments (common garden, low-intertidal or high-intertidal outplant) that vary in temperature and feeding time. Assessing 1519 genes shared between the two datasets revealed that both transcript and protein expression patterns differentiated the treatments at a global level, despite numerous underlying discrepancies. There were far more instances of differential expression between treatments in transcript only (1451) or protein only (226) than of the two levels shifting expression concordantly (68 instances). Upregulated expression of cilium-associated transcripts (likely related to feeding) was associated with relatively benign field treatments. In the most stressful treatment, transcripts, but not proteins, for several molecular chaperones (including heat shock proteins and endoplasmic reticulum chaperones) were more abundant, consistent with a threshold model for induction of translation of constitutively available mRNAs. Overall, these results suggest that the relative importance of transcript- and protein-level regulation (translation and/or turnover) differs among cellular functions and across specific microhabitats or environmental contexts. Furthermore, the degree of concordance between transcript and protein expression can vary across benign versus acutely stressful environmental conditions.
Collapse
Affiliation(s)
- Lani U. Gleason
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Florian J. Fekete
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Richelle L. Tanner
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - W. Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
4
|
Dong YW. Roles of multi-level temperature-adaptive responses and microhabitat variation in establishing distributions of intertidal species. J Exp Biol 2023; 226:jeb245745. [PMID: 37909420 DOI: 10.1242/jeb.245745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
How intertidal species survive their harsh environment and how best to evaluate and forecast range shifts in species distribution are two important and closely related questions for intertidal ecologists and global change biologists. Adaptive variation in responses of organisms to environmental change across all levels of biological organization - from behavior to molecular systems - is of key importance in setting distribution patterns, yet studies often neglect the interactions of diverse types of biological variation (e.g. differences in thermal optima owing to genetic and acclimation-induced effects) with environmental variation, notably at the scale of microhabitats. Intertidal species have to cope with extreme and frequently changing thermal stress, and have shown high variation in thermal sensitivities and adaptive responses at different levels of biological organization. Here, I review the physiological and biochemical adaptations of intertidal species to environmental temperature on multiple spatial and temporal scales. With fine-scale datasets for the thermal limits of individuals and for environmental temperature variation at the microhabitat scale, we can map the thermal sensitivity for each individual in different microhabitats, and then scale up the thermal sensitivity analysis to the population level and, finally, to the species level by incorporating physiological traits into species distribution models. These more refined mechanistic models that include consideration of physiological variations have higher predictive power than models that neglect these variations, and they will be crucial to answering the questions posed above concerning adaptive mechanisms and the roles they play in governing distribution patterns in a rapidly changing world.
Collapse
Affiliation(s)
- Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao 266001, China
| |
Collapse
|
5
|
Zhu YJ, Liao ML, Dong YW. Exploring the adaptability of the secondary structure of mRNA to temperature in intertidal snails based on SHAPE experiments. J Exp Biol 2023; 226:jeb246544. [PMID: 37767692 DOI: 10.1242/jeb.246544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
RNA-based thermal regulation is an important strategy for organisms to cope with temperature changes. Inhabiting the intertidal rocky shore, a key interface of the ocean, atmosphere and terrestrial environments, intertidal species have developed variable thermal adaptation mechanisms; however, adaptions at the RNA level remain largely uninvestigated. To examine the relationship between mRNA structural stability and species distribution, in the present study, the secondary structure of cytosolic malate dehydrogenase (cMDH) mRNA of Echinolittorina malaccana, Echinolittorina radiata and Littorina brevicula was determined using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), and the change in folding free energy of formation (ΔGfold) was calculated. The results showed that ΔGfold increased as the temperature increased. The difference in ΔGfold (ΔΔGfold) between two specific temperatures (25 versus 0°C, 37 versus 0°C and 57 versus 0°C) differed among the three species, and the ΔΔGfold value of E. malaccana was significantly lower than those of E. radiata and L. brevicula. The number of stems of cMDH mRNA of the snails decreased with increasing temperature, and the breakpoint temperature of E. malaccana was the highest among these. The number of loops was also reduced with increasing temperature, while the length of the loop structure increased accordingly. Consequently, these structural changes can potentially affect the translational efficiency of mRNA. These results imply that there were interspecific differences in the thermal stability of RNA secondary structures in intertidal snails, and these differences may be related to snail distribution.
Collapse
Affiliation(s)
- Ya-Jie Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
6
|
Jiménez-Gaona Y, Vivanco-Galván O, Cruz D, Armijos-Carrión A, Suárez JP. Compensatory Base Changes in ITS2 Secondary Structure Alignment, Modelling, and Molecular Phylogeny: An Integrated Approach to Improve Species Delimitation in Tulasnella (Basidiomycota). J Fungi (Basel) 2023; 9:894. [PMID: 37755002 PMCID: PMC10532482 DOI: 10.3390/jof9090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The delimitation of species of Tulasnella has been extensively studied, mainly at the morphological (sexual and asexual states) and molecular levels-showing ambiguity between them. An integrative species concept that includes characteristics such as molecular, ecology, morphology, and other information is crucial for species delimitation in complex groups such as Tulasnella. OBJECTIVES The aim of this study is to test evolutionary relationships using a combination of alignment-based and alignment-free distance matrices as an alternative molecular tool to traditional methods, and to consider the secondary structures and CBCs from ITS2 (internal transcribed spacer) sequences for species delimitation in Tulasnella. METHODOLOGY Three phylogenetic approaches were plotted: (i) alignment-based, (ii) alignment-free, and (iii) a combination of both distance matrices using the DISTATIS and pvclust libraries from an R package. Finally, the secondary structure consensus was modeled by Mfold, and a CBC analysis was obtained to complement the species delimitation using 4Sale. RESULTS AND CONCLUSIONS The phylogenetic tree results showed delimited monophyletic clades in Tulasnella spp., where all 142 Tulasnella sequences were divided into two main clades A and B and assigned to seven species (T. asymmetrica, T. andina, T. eichleriana ECU6, T. eichleriana ECU4 T. pinicola, T. violea), supported by bootstrap values from 72% to 100%. From the 2D secondary structure alignment, three types of consensus models with helices and loops were obtained. Thus, T. albida belongs to type I; T. eichleriana, T. tomaculum, and T. violea belong to type II; and T. asymmetrica, T. andina, T. pinicola, and T. spp. (GER) belong to type III; each type contains four to six domains, with nine CBCs among these that corroborate different species.
Collapse
Affiliation(s)
- Yuliana Jiménez-Gaona
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Oscar Vivanco-Galván
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador; (O.V.-G.); (D.C.); (J.P.S.)
| | - Darío Cruz
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador; (O.V.-G.); (D.C.); (J.P.S.)
| | - Angelo Armijos-Carrión
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador; (O.V.-G.); (D.C.); (J.P.S.)
| |
Collapse
|
7
|
Li J, Wen J, Hu R, Pei S, Li T, Shan B, Huang H, Zhu C. Transcriptome Responses to Different Environments in Intertidal Zones in the Peanut Worm Sipunculus nudus. BIOLOGY 2023; 12:1182. [PMID: 37759582 PMCID: PMC10525638 DOI: 10.3390/biology12091182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
The peanut worm (Sipunculus nudus) is an important intertidal species worldwide. Species living in the same aquaculture area might suffer different environmental impacts. To increase knowledge of the molecular mechanisms underlying the response to environmental fluctuations, we performed a transcriptome analysis of S. nudus from different intertidal zones using a combination of the SMRT platform and the Illumina sequencing platform. (1) A total of 105,259 unigenes were assembled, and 23,063 unigenes were perfectly annotated. The results of the PacBio Iso-Seq and IIIumina RNA-Seq enriched the genetic database of S. nudus. (2) A total of 830 DEGs were detected in S. nudus from the different groups. In particular, 33 DEGs had differential expression in the top nine KEGG pathways related to pathogens, protein synthesis, and cellular immune response and signaling. The results indicate that S. nudus from different zones experience different environmental stresses. (3) Several DEGs (HSPA1, NFKBIA, eEF1A, etc.) in pathways related to pathogens (influenza A, legionellosis, measles, and toxoplasmosis) had higher expression in groups M and L. HSPA1 was clearly enriched in most of the pathways, followed by NFKBIA. The results show that the peanut worms from the M and L tidal flats might have suffered more severe environmental conditions. (4) Some DEGs (MKP, MRAS, and HSPB1) were upregulated in peanut worms from the H tidal flat, and these DEGs were mainly involved in the MAPK signaling pathway. These results indicate that the MAPK pathway may play a vital role in the immune response of the peanut worm to the effects of different intertidal flats. This study provides a valuable starting point for further studies to elucidate the molecular basis of the response to different environmental stresses in S. nudus.
Collapse
Affiliation(s)
- Junwei Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Jiufu Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Ruiping Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, China
| | - Surui Pei
- Corregene Biotechnology Co., Ltd., Beijing 102600, China;
| | - Ting Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Binbin Shan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Changbo Zhu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata. Commun Biol 2023; 6:5. [PMID: 36596992 PMCID: PMC9810668 DOI: 10.1038/s42003-022-04407-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The roles of synonymous mutations for adapting to stressful thermal environments are of fundamental biological and ecological interests but poorly understood. To study whether synonymous mutations influence thermal adaptation at specific microhabitats, a genome-wide genotype-phenotype association analysis is carried out in the black mussels Mytilisepta virgata. A synonymous mutation of Ubiquitin-specific Peptidase 15 (MvUSP15) is significantly associated with the physiological upper thermal limit. The individuals carrying GG genotype (the G-type) at the mutant locus possess significantly lower heat tolerance compared to the individuals carrying GA and AA genotypes (the A-type). When heated to sublethal temperature, the G-type exhibit higher inter-individual variations in MvUSP15 expression, especially for the mussels on the sun-exposed microhabitats. Taken together, a synonymous mutation in MvUSP15 can affect the gene expression profile and interact with microhabitat heterogeneity to influence thermal resistance. This integrative study sheds light on the ecological importance of adaptive synonymous mutations as an underappreciated genetic buffer against heat stress and emphasizes the importance of integrative studies at a microhabitat scale for evaluating and predicting the impacts of climate change.
Collapse
|
9
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
10
|
Somero GN. Solutions: how adaptive changes in cellular fluids enable marine life to cope with abiotic stressors. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:389-413. [PMID: 37073170 PMCID: PMC10077225 DOI: 10.1007/s42995-022-00140-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
The seas confront organisms with a suite of abiotic stressors that pose challenges for physiological activity. Variations in temperature, hydrostatic pressure, and salinity have potential to disrupt structures, and functions of all molecular systems on which life depends. During evolution, sequences of nucleic acids and proteins are adaptively modified to "fit" these macromolecules for function under the particular abiotic conditions of the habitat. Complementing these macromolecular adaptations are alterations in compositions of solutions that bathe macromolecules and affect stabilities of their higher order structures. A primary result of these "micromolecular" adaptations is preservation of optimal balances between conformational rigidity and flexibility of macromolecules. Micromolecular adaptations involve several families of organic osmolytes, with varying effects on macromolecular stability. A given type of osmolyte generally has similar effects on DNA, RNA, proteins and membranes; thus, adaptive regulation of cellular osmolyte pools has a global effect on macromolecules. These effects are mediated largely through influences of osmolytes and macromolecules on water structure and activity. Acclimatory micromolecular responses are often critical in enabling organisms to cope with environmental changes during their lifetimes, for example, during vertical migration in the water column. A species' breadth of environmental tolerance may depend on how effectively it can vary the osmolyte composition of its cellular fluids in the face of stress. Micromolecular adaptations remain an under-appreciated aspect of evolution and acclimatization. Further study can lead to a better understanding of determinants of environmental tolerance ranges and to biotechnological advances in designing improved stabilizers for biological materials.
Collapse
Affiliation(s)
- George N. Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 USA
| |
Collapse
|
11
|
Somero GN. The Goldilocks Principle: A Unifying Perspective on Biochemical Adaptation to Abiotic Stressors in the Sea. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:1-23. [PMID: 34102065 DOI: 10.1146/annurev-marine-022521-102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| |
Collapse
|
12
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|