1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Wang X, Weng G, Gao Y, Wang Y, Zhang C. Quercetin ameliorates chronic restraint stress- and LPS-induced anxiety-like behaviors by modulating neuroinflammation in the lateral hypothalamus. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06784-0. [PMID: 40208264 DOI: 10.1007/s00213-025-06784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Quercetin is a natural flavonoid which has been shown to exhibit anti-inflammatory and anxiolytic properties. Neuroinflammation has recently been identified as a major cause of anxiety disorders. Both the lateral hypothalamus (LH) and bed nucleus of the stria terminalis (BNST) are important brain regions that regulate anxiety. This study aims to explore the effect of quercetin on anxiety-like behaviors, as well as the underlying mechanisms associated with neuroinflammation in the LH and BNST. METHODS The anxiety models were established in male mice by chronic restraint stress (CRS) and lipopolysaccharide (LPS) administration. The elevated plus maze (EPM) and open field (OF) tests were used to evaluate anxiety level. Immunofluorescent staining and quantitative real-time PCR were performed to examine the expression of microglia and inflammatory cytokines in the LH and BNST of male mice. RESULTS Behavioral data showed that quercetin treatment in male mice significantly alleviated anxiety in the EPM and OF tests. Examination of the inflammation level further revealed that quercetin administration significantly inhibited microglia activation in the LH and BNST of CRS- and LPS-treated male mice, while concurrently reducing the levels of the pro-inflammatory cytokine interleukin-6 (IL-6) in the LH of CRS-treated male mice, as well as interleukin-1β (IL-1β) mRNA expression in the LH of LPS-treated male mice. Furthermore, we found that the expression of NF-κB was downregulated by quercetin in the LH of CRS-treated male mice. CONCLUSION Our study indicates the clinical potential of quercetin in neuroinflammation-related anxiety, and begins to show that the underlying mechanism in the chronic restraint stress condition may potentially involve the modulation of NF‑κB signaling pathway in the LH.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guangdong Weng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunpei Gao
- University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Mulvaney SW, Dineen KJ, Mahadevan S, Desronvilles R, Rae Olmsted KL. Three-Month Durability of Bilateral Two-Level Stellate Ganglion Blocks in Patients with Generalized Anxiety Disorder: A Retrospective Analysis. Brain Sci 2025; 15:188. [PMID: 40002521 PMCID: PMC11853295 DOI: 10.3390/brainsci15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Determine if performing ultrasound-guided, bilateral, two-level cervical sympathetic chain blocks (2LCSB) (performed on subsequent days) provides durable improvement in symptoms associated with anxiety. Methods: A retrospective chart review was conducted between January 2022 and November 2024. We identified 114 patients who received bilateral, 2LCSB for anxiety symptoms. Generalized Anxiety Disorder 7-Item Scale (GAD-7) outcome measure scores were collected at baseline and three-months post procedure in 71 males and 43 females. Results: Out of 114 patients, 99 patients (86.8%) showed a long-lasting improvement in their GAD-7 scores. Collected GAD-7 forms had a baseline average of 15.52 (14.99 for males and 16.40 for females), which decreased after three months to an average of 7.28 (6.96 for males and 7.81 for females). This represents a 52% average improvement in anxiety symptoms. Conclusions: In individuals treated with bilateral, 2LCSB, GAD-related symptoms were improved by 52% for at least 3 months regardless of initial anxiety severity.
Collapse
Affiliation(s)
- Sean W. Mulvaney
- Department of Military and Emergency Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA;
| | - Kyle J. Dineen
- Orthobiologics Research Initiative Inc., 11200 Rockville Pike #230, North Bethesda, MD 20852, USA; (S.M.); (R.D.J.)
| | - Sanjay Mahadevan
- Orthobiologics Research Initiative Inc., 11200 Rockville Pike #230, North Bethesda, MD 20852, USA; (S.M.); (R.D.J.)
| | - Roosevelt Desronvilles
- Orthobiologics Research Initiative Inc., 11200 Rockville Pike #230, North Bethesda, MD 20852, USA; (S.M.); (R.D.J.)
| | | |
Collapse
|
4
|
Zheng J, Tian Z. Neurotransmitter Switching: A Novel Mechanism for Fear Generalization. Neurosci Bull 2024; 40:2015-2018. [PMID: 39078593 PMCID: PMC11625032 DOI: 10.1007/s12264-024-01264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Jiayuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Ham H, Kim KS, Lee JH, Kim DN, Choi HJ, Yoh JJ. Acoustic deep brain modulation: Enhancing neuronal activation and neurogenesis. Brain Stimul 2024; 17:1060-1075. [PMID: 39218349 DOI: 10.1016/j.brs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.
Collapse
Affiliation(s)
- Hwichan Ham
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jee-Hwan Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyung-Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, South Korea.
| | - Jack J Yoh
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Zhang A, Liu T, Xu J, Zhao Q, Wang X, Jiang Z, Liang S, Cui Y, Li Y. Efficacy of deep brain stimulation for Tourette syndrome and its comorbidities: A meta-analysis. Neurotherapeutics 2024; 21:e00360. [PMID: 38688785 PMCID: PMC11284552 DOI: 10.1016/j.neurot.2024.e00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by multiple motor and vocal tics, often accompanied by comorbid disorders. Optional treatments for patients with TS include behavioral therapy, pharmacotherapy, and neurostimulation techniques. Deep brain stimulation (DBS) has been considered a therapeutic approach for refractory TS and its comorbid symptoms. However, systematic comparison is necessary to understand the therapeutic effect of DBS among patients with TS with various comorbid symptoms, demographic characteristics, or stimulation targets. Consequently, our research aimed to assess the clinical efficacy of DBS in alleviating the symptoms of TS and its comorbidities. A systematic literature search was conducted across five databases: PubMed, Web of Science, MEDLINE, Embase, and PsycINFO. The primary outcome was the mean change in the global score of the Yale Global Tic Severity Scale (YGTSS), which assesses the severity of tics. The secondary outcomes included mean improvement of comorbid symptoms, such as obsessive-compulsive behaviors (OCB), depression symptoms and anxiety symptoms. In total, 51 studies with 673 participants were included in this meta-analysis. Overall, the DBS led to a significant improvement in tic symptoms (p < 0.001), as well as the comorbid obsessive-compulsive, depression, and anxiety symptoms with effect sizes of 1.88, 0.88, 1.04, and 0.76 accordingly. In the subgroup analysis, we found that striatum stimulation led to a more significant improvement in OCB in patients with TS compared to that observed with thalamic stimulation (p = 0.017). The relationship between sex, age, and target with the improvement of tics, depression, and anxiety was not statistically significant (p = 0.923, 0.438, 0.591 for different male proportions; p = 0.463, 0.425, 0.105 for different age groups; p = 0.619, 0.113, 0.053 for different targets). In conclusion, DBS is an efficient treatment option for TS, as well as the comorbid OCB, depression symptoms, and anxiety symptoms. It is important to highlight that stimulating the striatum is more effective in managing obsessive-compulsive symptoms compared to stimulating the thalamus.
Collapse
Affiliation(s)
- Anyi Zhang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Tinghong Liu
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jinshan Xu
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qing Zhao
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Xianbin Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Zhongliang Jiang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China.
| | - Ying Li
- Department of Psychosomatic Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
7
|
Harada M, Capdevila LS, Wilhelm M, Burdakov D, Patriarchi T. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife 2024; 12:RP90158. [PMID: 38567902 PMCID: PMC10990487 DOI: 10.7554/elife.90158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.
Collapse
Affiliation(s)
- Masaya Harada
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | | | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | - Denis Burdakov
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
- Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
| |
Collapse
|
8
|
Li HT, Viskaitis P, Bracey E, Peleg-Raibstein D, Burdakov D. Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy. Nat Commun 2024; 15:1249. [PMID: 38341419 PMCID: PMC10858876 DOI: 10.1038/s41467-024-45515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lateral hypothalamic (LH) hypocretin/orexin neurons (HONs) control brain-wide electrical excitation. Abnormally high excitation produces epileptic seizures, which affect millions of people and need better treatments. HON population activity spikes from minute to minute, but the role of this in seizures is unknown. Here, we describe correlative and causal links between HON activity spikes and seizures. Applying temporally-targeted HON recordings and optogenetic silencing to a male mouse model of acute epilepsy, we found that pre-seizure HON activity predicts and controls the electrophysiology and behavioral pathology of subsequent seizures. No such links were detected for HON activity during seizures. Having thus defined the time window where HONs influence seizures, we targeted it with LH deep brain stimulation (DBS), which inhibited HON population activity, and produced seizure protection. Collectively, these results uncover a feature of brain activity linked to seizures, and demonstrate a proof-of-concept treatment that controls this feature and alleviates epilepsy.
Collapse
Affiliation(s)
- Han-Tao Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 333, Taoyuan, Taiwan
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Eva Bracey
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
9
|
Peleg-Raibstein D, Viskaitis P, Burdakov D. Eat, seek, rest? An orexin/hypocretin perspective. J Neuroendocrinol 2023; 35:e13259. [PMID: 36994677 DOI: 10.1111/jne.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
10
|
Carrillo-Ruiz JD, Carrillo-Márquez JR, Beltrán JQ, Jiménez-Ponce F, García-Muñoz L, Navarro-Olvera JL, Márquez-Franco R, Velasco F. Innovative perspectives in limbic surgery using deep brain stimulation. Front Neurosci 2023; 17:1167244. [PMID: 37274213 PMCID: PMC10233042 DOI: 10.3389/fnins.2023.1167244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Limbic surgery is one of the most attractive and retaken fields of functional neurosurgery in the last two decades. Psychiatric surgery emerged from the incipient work of Moniz and Lima lesioning the prefrontal cortex in agitated patients. Since the onset of stereotactic and functional neurosurgery with Spiegel and Wycis, the treatment of mental diseases gave attention to refractory illnesses mainly with the use of thalamotomies. Neurosis and some psychotic symptoms were treated by them. Several indications when lesioning the brain were included: obsessive-compulsive disorder, depression, and aggressiveness among others with a diversity of targets. The indiscriminately use of anatomical sites without enough scientific evidence, and uncertainly defined criteria for selecting patients merged with a deficiency in ethical aspects, brought a lack of procedures for a long time: only select clinics allowed this surgery around the world from 1950 to the 1990s. In 1999, Nuttin et al. began a new chapter in limbic surgery with the use of Deep Brain Stimulation, based on the experience of pain, Parkinson's disease, and epilepsy. The efforts were focused on different targets to treat depression and obsessive-compulsive disorders. Nevertheless, other diseases were added to use neuromodulation. The goal of this article is to show the new opportunities to treat neuropsychiatric diseases.
Collapse
Affiliation(s)
- José Damián Carrillo-Ruiz
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
- Research Direction, Mexico General Hospital, Mexico City, Mexico
- Neuroscience Coordination, Psychology Faculty, Anahuac University, Mexico City, Mexico
| | - José Rodrigo Carrillo-Márquez
- Faculty of Health Sciences, Anahuac University, Mexico City, Mexico
- Alpha Health Sciences Leadership Program, Anahuac University, Mexico City, Mexico
| | - Jesús Quetzalcóatl Beltrán
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Fiacro Jiménez-Ponce
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Luis García-Muñoz
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - José Luis Navarro-Olvera
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - René Márquez-Franco
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Francisco Velasco
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| |
Collapse
|
11
|
King C, Parker TM, Roussos-Ross K, Ramirez-Zamora A, Smulian JC, Okun MS, Wong JK. Safety of deep brain stimulation in pregnancy: A comprehensive review. Front Hum Neurosci 2022; 16:997552. [PMID: 36248692 PMCID: PMC9557283 DOI: 10.3389/fnhum.2022.997552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) is increasingly used to treat the symptoms of various neurologic and psychiatric conditions. People can undergo the procedure during reproductive years but the safety of DBS in pregnancy remains relatively unknown given the paucity of published cases. We thus conducted a review of the literature to determine the state of current knowledge about DBS in pregnancy and to determine how eligibility criteria are approached in clinical trials with respect to pregnancy and the potential for pregnancy. Methods A literature review was conducted in EMBASE to identify articles involving DBS and pregnancy. Two reviewers independently analyzed the articles to confirm inclusion. Data extracted for analysis included conditions treated, complications at all stages of pregnancy, neonatal/pediatric outcomes, and DBS target. A second search was then conducted using www.clinicaltrials.gov. The same two reviewers then assessed whether each trial excluded pregnant individuals, lactating individuals, or persons of childbearing age planning to conceive. Also assessed was whether contraception had to be deemed adequate prior to enrollment. Results The literature search returned 681 articles. Following independent analysis and agreement of two reviewers, 8 pregnancy related DBS articles were included for analysis. These articles described 27 subjects, 29 pregnancies (2 with subsequent pregnancies), and 31 infants (2 twin pregnancies). There was 1 preterm birth at 35 weeks, and 3 patients who experienced discomfort from the DBS battery (i.e., impulse generator) placement site. All 27 patients had a DBS device implanted before they became pregnant, which remained in use throughout their pregnancy. There was exclusion of pregnant individuals from 68% of 135 interventional trials involving DBS. Approximately 44% of these trials excluded persons of childbearing age not on "adequate contraception" or wishing to conceive in the coming years. Finally, 22% excluded breastfeeding persons. Conclusion The data from 29 pregnancies receiving DBS treatment during pregnancy was not associated with unexpected pregnancy or post-partum complication patterns. Many clinical trials have excluded pregnant individuals. Documentation of outcomes in larger numbers of pregnancies will help clarify the safety profile and will help guide study designs that will safely include pregnant patients.
Collapse
Affiliation(s)
- Caroline King
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
| | - T. Maxwell Parker
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - Kay Roussos-Ross
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - John C. Smulian
- Department of Obstetrics & Gynecology, University of Florida College of Medicine, Gainesville, FL, United States
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|