1
|
Tang W, Liu Y, Li X, Leng G, Gao J, Wang Y, Yao J, Liu Z, Zhou Q, Xu Y. Microbiological Characteristics of Clinically Isolated Staphylococcus aureus with Different Hemolytic Phenotypes in China. Infect Drug Resist 2024; 17:3273-3287. [PMID: 39104458 PMCID: PMC11299731 DOI: 10.2147/idr.s466416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose This study aimed to investigate the microbiological characteristics of clinically isolated Staphylococcus aureus with different hemolytic phenotypes in China. Materials and Methods Using the three-point inoculation method, the hemolytic phenotypes of 1295 clinically isolated S. aureus strains were detected and categorized. Antimicrobial susceptibility testing of all strains was performed using a VITEK 2 Compact System. After sample size matching, plasma coagulase activity, catalase activity, mRNA expression of hemolysin genes (hla, hlb, hlc, and hld), biofilm formation, growth kinetics, inflammatory response of macrophages and cytotoxicity of S. aureus with different hemolytic phenotypes using the rabbit plasma kit, the catalase test on slides, qRT-PCR, crystal violet staining, the microcultivation assay, the ELISA kits, and the CCK-8 assay, respectively. Results Seven categories of hemolytic phenotypes were identified. Accordingly, strains were categorized into seven different groups, including S. aureus with complete hemolytic phenotype (SCHP), S. aureus with weak hemolytic phenotype (SWHP), S. aureus with incomplete hemolytic phenotype 1 (SIHP-1), SIHP-2, SIHP-3, SIHP-4 and SIHP-5, the last three of which were reported for the first time. Except for the hemolytic phenotype, all seven groups differed in clinical isolation rates, antibiotic resistance profile, plasma coagulase activity, mRNA expression of hemolysin genes, biofilm formation, growth kinetics, inflammatory response of macrophages, and cytotoxicity. Conclusion S. aureus with different hemolytic phenotypes have distinctive microbiological characteristics. Clinical microbiologists need to be vigilant about the hemolytic phenotypes when culturing S. aureus strains, and actively enhance communication with clinicians to optimize the treatment of infection.
Collapse
Affiliation(s)
- Wei Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Ying Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People’s Republic of China
| | - Xin Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Guiyun Leng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Ju Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Yawu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Jie Yao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| |
Collapse
|
2
|
Hou Z, Qiang W, Wang X, Chen X, Hu X, Han X, Shen W, Zhang B, Xing P, Shi W, Dai J, Huang X, Zhao G. "Cell Disk" DNA Storage System Capable of Random Reading and Rewriting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305921. [PMID: 38332565 PMCID: PMC11022697 DOI: 10.1002/advs.202305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Indexed: 02/10/2024]
Abstract
DNA has emerged as an appealing material for information storage due to its great storage density and durability. Random reading and rewriting are essential tasks for practical large-scale data storage. However, they are currently difficult to implement simultaneously in a single DNA-based storage system, strongly limiting their practicability. Here, a "Cell Disk" storage system is presented, achieving high-density in vivo DNA data storage that enables both random reading and rewriting. In this system, each yeast cell is used as a chamber to store information, similar to a "disk block" but with the ability to self-replicate. Specifically, each genome of yeast cell has a customized CRISPR/Cas9-based "lock-and-key" module inserted, which allows selective retrieval, erasure, or rewriting of the targeted cell "block" from a pool of cells ("disk"). Additionally, a codec algorithm with lossless compression ability is developed to improve the information density of each cell "block". As a proof of concept, target-specific reading and rewriting of the compressed data from a mimic cell "disk" comprising up to 105 "blocks" are demonstrated and achieve high specificity and reliability. The "Cell Disk" system described here concurrently supports random reading and rewriting, and it should have great scalability for practical data storage use.
Collapse
Affiliation(s)
- Zhaohua Hou
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Wei Qiang
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Xiangxiang Wang
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Xiaoxu Chen
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Xin Hu
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Xuye Han
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Wenlu Shen
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Bing Zhang
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Peng Xing
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Wenping Shi
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenP. R. China
| | - Xiaoluo Huang
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Guanghou Zhao
- School of Ecology and EnvironmentNorthwestern Polytechnical University1 Dongxiang Road, Chang'an DistrictXi'anShaanxi710129P. R. China
| |
Collapse
|
3
|
Jiang S, Cai Z, Wang Y, Zeng C, Zhang J, Yu W, Su C, Zhao S, Chen Y, Shen Y, Ma Y, Cai Y, Dai J. High plasticity of ribosomal DNA organization in budding yeast. Cell Rep 2024; 43:113742. [PMID: 38324449 DOI: 10.1016/j.celrep.2024.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaying Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Su
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, BGI, Shenzhen 518083, China
| | - Yue Shen
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518055, China.
| |
Collapse
|
4
|
Jiang S, Luo Z, Wu J, Yu K, Zhao S, Cai Z, Yu W, Wang H, Cheng L, Liang Z, Gao H, Monti M, Schindler D, Huang L, Zeng C, Zhang W, Zhou C, Tang Y, Li T, Ma Y, Cai Y, Boeke JD, Zhao Q, Dai J. Building a eukaryotic chromosome arm by de novo design and synthesis. Nat Commun 2023; 14:7886. [PMID: 38036514 PMCID: PMC10689750 DOI: 10.1038/s41467-023-43531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The genome of an organism is inherited from its ancestor and continues to evolve over time, however, the extent to which the current version could be altered remains unknown. To probe the genome plasticity of Saccharomyces cerevisiae, here we replace the native left arm of chromosome XII (chrXIIL) with a linear artificial chromosome harboring small sets of reconstructed genes. We find that as few as 12 genes are sufficient for cell viability, whereas 25 genes are required to recover the partial fitness defects observed in the 12-gene strain. Next, we demonstrate that these genes can be reconstructed individually using synthetic regulatory sequences and recoded open-reading frames with a "one-amino-acid-one-codon" strategy to remain functional. Finally, a synthetic neochromsome with the reconstructed genes is assembled which could substitute chrXIIL for viability. Together, our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional eukaryotic chromosomes from entirely artificial sequences.
Collapse
Grants
- National Natural Science Foundation of China (31725002), Shenzhen Science and Technology Program (KQTD20180413181837372), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006),Bureau of International Cooperation,Chinese Academy of Sciences (172644KYSB20180022) and Shenzhen Outstanding Talents Training Fund.
- National Key Research and Development Program of China (2018YFA0900100),National Natural Science Foundation of China (31800069),Guangdong Basic and Applied Basic Research Foundation (2023A1515030285)
- National Key Research and Development Program of China (2018YFA0900100), National Natural Science Foundation of China (31800082 and 32122050),Guangdong Natural Science Funds for Distinguished Young Scholar (2021B1515020060)
- UK Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/M005690/1, BB/P02114X/1 and BB/W014483/1, and a Volkswagen Foundation “Life? Initiative” Grant (Ref. 94 771)
- US NSF grants MCB-1026068, MCB-1443299, MCB-1616111 and MCB-1921641
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Li Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Chun Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianyi Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yizhi Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Qiao Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
6
|
Wang X, Zhao Y, Hou Z, Chen X, Jiang S, Liu W, Hu X, Dai J, Zhao G. Large-scale pathway reconstruction and colorimetric screening accelerate cellular metabolism engineering. Metab Eng 2023; 80:107-118. [PMID: 37717647 DOI: 10.1016/j.ymben.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The capability to manipulate and analyze hard-wired metabolic pathways sets the pace at which we can engineer cellular metabolism. Here, we present a framework to extensively rewrite the central metabolic pathway for malonyl-CoA biosynthesis in yeast and readily assess malonyl-CoA output based on pathway-scale DNA reconstruction in combination with colorimetric screening (Pracs). We applied Pracs to generate and test millions of enzyme variants by introducing genetic mutations into the whole set of genes encoding the malonyl-CoA biosynthetic pathway and identified hundreds of beneficial enzyme mutants with increased malonyl-CoA output. Furthermore, the synthetic pathways reconstructed by randomly integrating these beneficial enzyme variants generated vast phenotypic diversity, with some displaying higher production of malonyl-CoA as well as other metabolites, such as carotenoids and betaxanthin, thus demonstrating the generic utility of Pracs to efficiently orchestrate central metabolism to optimize the production of different chemicals in various metabolic pathways. Pracs will be broadly useful to advance our ability to understand and engineer cellular metabolism.
Collapse
Affiliation(s)
- Xiangxiang Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yuyu Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhaohua Hou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoxu Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xin Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Guanghou Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
7
|
Li S, Dohlman HG. Evolutionary conservation of sequence motifs at sites of protein modification. J Biol Chem 2023; 299:104617. [PMID: 36933807 PMCID: PMC10139944 DOI: 10.1016/j.jbc.2023.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Gene duplications are common in biology and are likely to be an important source of functional diversification and specialization. The yeast Saccharomyces cerevisiae underwent a whole-genome duplication event early in evolution, and a substantial number of duplicated genes have been retained. We identified more than 3500 instances where only one of two paralogous proteins undergoes posttranslational modification despite having retained the same amino acid residue in both. We also developed a web-based search algorithm (CoSMoS.c.) that scores conservation of amino acid sequences based on 1011 wild and domesticated yeast isolates and used it to compare differentially modified pairs of paralogous proteins. We found that the most common modifications-phosphorylation, ubiquitylation, and acylation but not N-glycosylation-occur in regions of high sequence conservation. Such conservation is evident even for ubiquitylation and succinylation, where there is no established 'consensus site' for modification. Differences in phosphorylation were not associated with predicted secondary structure or solvent accessibility but did mirror known differences in kinase-substrate interactions. Thus, differences in posttranslational modification likely result from differences in adjoining amino acids and their interactions with modifying enzymes. By integrating data from large-scale proteomics and genomics analysis, in a system with such substantial genetic diversity, we obtained a more comprehensive understanding of the functional basis for genetic redundancies that have persisted for 100 million years.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
8
|
Abstract
Although differential transcription drives the development of multicellular organisms, the ultimate readout of a protein-coding gene is ribosome-dependent mRNA translation. Ribosomes were once thought of as uniform molecular machines, but emerging evidence indicates that the complexity and diversity of ribosome biogenesis and function should be given a fresh look in the context of development. This Review begins with a discussion of different developmental disorders that have been linked with perturbations in ribosome production and function. We then highlight recent studies that reveal how different cells and tissues exhibit variable levels of ribosome production and protein synthesis, and how changes in protein synthesis capacity can influence specific cell fate decisions. We finish by touching upon ribosome heterogeneity in stress responses and development. These discussions highlight the importance of considering both ribosome levels and functional specialization in the context of development and disease.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|