1
|
Kim S, Todisco M, Radakovic A, Szostak JW. Stereoselectivity of Aminoacyl-RNA Loop-Closing Ligation. J Am Chem Soc 2025; 147:19539-19546. [PMID: 40437938 PMCID: PMC12164329 DOI: 10.1021/jacs.4c16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
The origin of amino acid homochirality remains an unresolved question in the origin of life. The requirement of enantiopure nucleotides for nonenzymatic RNA copying strongly suggests that the homochirality of nucleotides and RNA arose early. However, this leaves open the question of whether and how homochiral RNA subsequently imposes biological homochirality on other metabolites, including amino acids. Previous studies have reported moderate stereoselectivity for various aminoacyl-RNA transfer reactions. Here, we examine aminoacyl-RNA loop-closing ligation, a reaction that "captures" aminoacylated RNA in a stable phosphoramidate product, such that the amino acid bridges two nucleotides in the RNA backbone. We find that the rate of this reaction is much higher for RNA aminoacylated with L-amino acids than for RNA aminoacylated with D-amino acids. We present an RNA sequence that nearly exclusively captures L-amino acids in loop-closing ligation. Finally, we demonstrate that ligation of aminoacyl-L-RNA results in an inverse stereoselectivity for D-amino acids. The observed stereochemical link between D-RNA and L-amino acids in the synthesis of RNA stem-loops containing bridging amino acids constitutes a stereoselective structure-building process. We suggest that this process led to a selection for the evolution of aminoacyl-RNA synthetase ribozymes that were selective for L-amino acids, thereby setting the stage for the subsequent evolution of homochiral peptides and, ultimately, protein synthesis.
Collapse
Affiliation(s)
- Shannon Kim
- Howard Hughes Medical Institute,
Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Marco Todisco
- Howard Hughes Medical Institute,
Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Aleksandar Radakovic
- Howard Hughes Medical Institute,
Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Jack W. Szostak
- Howard Hughes Medical Institute,
Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
2
|
Cheng YK, Chu HH, Yang NJ, Lai YC. Decoupling Global and Local Structural Changes in Self-aminoacylating Ribozymes Reveals the Critical Role of Local Structural Dynamics in Ribozyme Activity. JACS AU 2025; 5:2172-2185. [PMID: 40443886 PMCID: PMC12117395 DOI: 10.1021/jacsau.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 06/02/2025]
Abstract
Self-aminoacylating ribozymes catalyze the attachment of amino acids to RNA, serving as pivotal models to investigate the catalytic roles of RNA in prebiotic evolution. In this study, we investigated how divalent metal ions (Mg2+ and Ca2+) modulate local and global structures in two such ribozymes, S-1A.1-a and S-2.1-a, using 4-cyanotryptophan (4CNW) fluorescence and native gel electrophoresis. By tracking 4CNW fluorescence changes at varying concentrations of Mg2+ and Ca2+ and temperatures, we determined how these ions influence the catalytic sites and overall conformations of the ribozymes. Our findings reveal that Mg2+ specifically binds to S-1A.1-a at low concentrations, stabilizing the local structure around the aminoacylation site and causing the site to become more buried, which is essential for catalytic activity. Although higher Mg2+ and Ca2+ concentrations induce global structural rearrangements, these shifts have minimal impact on the local environment of the aminoacylation site, underscoring the dominance of local structural stability in sustaining ribozyme function. In contrast, the activity of S-2.1-a effectively adapts to both Mg2+ and Ca2+, and its fluorescence results indicate a more solvent-exposed aminoacylation site. Overall, these data highlight that local structural changes in the ribozyme's catalytic core are more critical for its function than global conformational shifts. Our study highlights the importance of local environmental changes in ion-dependent ribozyme catalysis and provides insights into the molecular mechanisms of self-aminoacylating ribozymes.
Collapse
Affiliation(s)
- Yu-Kai Cheng
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd., South Dist, Taichung
City402202, Taiwan
| | - Hsing-Hui Chu
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd., South Dist, Taichung
City402202, Taiwan
| | - Ning-Jun Yang
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd., South Dist, Taichung
City402202, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd., South Dist, Taichung
City402202, Taiwan
| |
Collapse
|
3
|
Décout JL, Maurel MC. Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes. Chembiochem 2025:e2500035. [PMID: 40237374 DOI: 10.1002/cbic.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
In early life, RNA probably played the central role and, in the corresponding RNA world, the main produced amino acids and small peptides had to react continuously with RNA, ribonucleos(t)ides and nucleobases, especially with purines. A RNA-peptide world and key metabolic pathways have emerged from the corresponding chemical modifications such as the translation process performed by the ribosome. Some interesting reactions of the purine bicycle and of the corresponding ribonucleos(t)ides are performed under plausible prebiotic conditions and described RNA chemical lesions are reviewed with the prospect to highlight their connection with some major steps of the purine and histidine biosynthetic pathways that are, in an intriguingly way, related through two key metabolites, adenosine 5'-triphosphate and the imidazole ribonucleotide 5-aminoimidazole-4-carboxamide ribonucleotide. Ring-opening reactions of purines stand out as efficient accesses to imidazole ribonucleotides and to formamidopyrimidine (Fapy) ribonucleotides suggesting that biosynthetic pathway' first steps have emerged from RNA and ribonucleos(t)ide damages. Also, are summarized the works on the formation and catalytic properties, under plausible prebiotic conditions, of N6-derivatives of the purine base adenine as potential surrogates of histidine in catalysis accordingly to their structural relationship.
Collapse
Affiliation(s)
- Jean-Luc Décout
- Département de Pharmacochimie Moléculaire, UMR 5063, Université Grenoble Alpes, CNRS, Faculté de Pharmacie, 38000, Grenoble, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
4
|
Lu M, Cao Z, Xiong L, Deng H, Ma K, Liu N, Qin Y, Chen SB, Chen JH, Li Y, Liu Y, Yu Z. A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA. Commun Biol 2025; 8:165. [PMID: 39900966 PMCID: PMC11791167 DOI: 10.1038/s42003-025-07600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Ribozymes, widely found in prokaryotes and eukaryotes, target nucleic acids and can be engineered as biotechnical tools or for gene regulation or immune therapy. Among them, hammerhead is the smallest and best characterized ribozyme. However, the structure and biochemical data of ribozymes have been disagreed on, making the understanding of its catalysis mechanism a longstanding issue. Particularly, the role of conformational dynamics in ribozyme catalysis remains elusive. Here, we use single-molecule magnetic tweezers to reveal a concerted catalysis mechanism of mechanical conformational selection for a mini hammerhead ribozyme against a viral RNA sequence from the SARS-CoV-2. We identify a conformational set containing five mechanical conformers of the mini ribozyme, where magnesium ions select the active one. Our results are supported by molecular dynamics simulations. Our understanding of the RNA catalytic mechanism will be beneficial for ribozyme's biotechnological applications and as potential therapeutics against RNA viruses.
Collapse
Affiliation(s)
- Man Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Zhiqiang Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Luoan Xiong
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Hongying Deng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, and College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yanding Qin
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yao Li
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, and College of Pharmacy, Nankai University, Tianjin, China.
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
White LK, Radakovic A, Sajek MP, Dobson K, Riemondy KA, Del Pozo S, Szostak JW, Hesselberth JR. Nanopore sequencing of intact aminoacylated tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623114. [PMID: 39605391 PMCID: PMC11601438 DOI: 10.1101/2024.11.18.623114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transfer RNAs (tRNA) are decorated during biogenesis with a variety of modifications that modulate their stability, aminoacylation, and decoding potential during translation. The complex landscape of tRNA modification presents significant analysis challenges and to date no single approach enables the simultaneous measurement of important but disparate chemical properties of individual, mature tRNA molecules. We developed a new, integrated approach to analyze the sequence, modification, and aminoacylation state of tRNA molecules in a high throughput nanopore sequencing experiment, leveraging a chemical ligation that embeds the charged amino acid in an adapted tRNA molecule. During nanopore sequencing, the embedded amino acid generates unique distortions in ionic current and translocation speed, enabling application of machine learning approaches to classify charging status and amino acid identity. Specific applications of the method indicate it will be broadly useful for examining relationships and dependencies between tRNA sequence, modification, and aminoacylation.
Collapse
Affiliation(s)
- Laura K White
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Aleksandar Radakovic
- Harvard Medical School, Department of Genetics, Boston, Massachusetts
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Marcin P Sajek
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kezia Dobson
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kent A Riemondy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Samantha Del Pozo
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Jack W Szostak
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Jay R Hesselberth
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| |
Collapse
|
6
|
Radakovic A, Lewicka A, Todisco M, Aitken HRM, Weiss Z, Kim S, Bannan A, Piccirilli JA, Szostak JW. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc Natl Acad Sci U S A 2024; 121:e2410206121. [PMID: 39178230 PMCID: PMC11363276 DOI: 10.1073/pnas.2410206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid-specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here, we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture that is found in many noncoding RNAs, including the modern tRNA. We demonstrate that the T-loop-assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of amino acid-bridged chimeric ribozymes provides a direct and facile route for the covalent incorporation of amino acids into RNA. A greater functionality of covalently incorporated amino acids could contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid-specific aminoacyl-RNA synthetase ribozymes in the RNA World. The synthesis of specifically aminoacylated RNAs, an unlikely prospect for nonenzymatic reactions but a likely one for ribozymes, could have set the stage for the subsequent evolution of coded protein synthesis.
Collapse
Affiliation(s)
- Aleksandar Radakovic
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Marco Todisco
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Harry R. M. Aitken
- HHMI, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Zoe Weiss
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Shannon Kim
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Abdullah Bannan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Joseph A. Piccirilli
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Jack W. Szostak
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL60637
| |
Collapse
|
7
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Sun L, Sun B, Zhang Y, Chen K. Kinetic properties of glucose 6-phosphate dehydrogenase and inhibition effects of several metal ions on enzymatic activity in vitro and cells. Sci Rep 2024; 14:5806. [PMID: 38461203 PMCID: PMC10924972 DOI: 10.1038/s41598-024-56503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
9
|
Radakovic A, Lewicka A, Todisco M, Aitken HRM, Weiss Z, Kim S, Bannan A, Piccirilli JA, Szostak JW. Structure-guided aminoacylation and assembly of chimeric RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583109. [PMID: 38464152 PMCID: PMC10925264 DOI: 10.1101/2024.03.02.583109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture found in modern tRNA. We demonstrate that the T-loop assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of such chimeric ribozymes would have allowed the greater functionality of amino acids to contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid specific aminoacyl-RNA synthetase enzymes prior to their role in protein synthesis.
Collapse
|
10
|
Thoma B, Powner MW. Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water. J Am Chem Soc 2023; 145:3121-3130. [PMID: 36700882 PMCID: PMC9912261 DOI: 10.1021/jacs.2c12497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise N-to-C terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) N-to-C-terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.
Collapse
|
11
|
Wu LF, Liu Z, Roberts SJ, Su M, Szostak JW, Sutherland JD. Template-Free Assembly of Functional RNAs by Loop-Closing Ligation. J Am Chem Soc 2022; 144:13920-13927. [PMID: 35880790 PMCID: PMC9354263 DOI: 10.1021/jacs.2c05601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first ribozymes are thought to have emerged at a time when RNA replication proceeded via nonenzymatic template copying processes. However, functional RNAs have stable folded structures, and such structures are much more difficult to copy than short unstructured RNAs. How can these conflicting requirements be reconciled? Also, how can the inhibition of ribozyme function by complementary template strands be avoided or minimized? Here, we show that short RNA duplexes with single-stranded overhangs can be converted into RNA stem loops by nonenzymatic cross-strand ligation. We then show that loop-closing ligation reactions enable the assembly of full-length functional ribozymes without any external template. Thus, one can envisage a potential pathway whereby structurally complex functional RNAs could have formed at an early stage of evolution when protocell genomes might have consisted only of collections of short replicating oligonucleotides.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.,Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Jack W Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
12
|
Bonfio C. A possible path towards encoded protein synthesis on ancient Earth. Nature 2022; 605:231-232. [PMID: 35546187 DOI: 10.1038/d41586-022-01256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|