1
|
Lechner S, Sha S, Sethiya JP, Szczupak P, Dolot R, Lomada S, Sakhteman A, Tushaus J, Prokofeva P, Krauss M, Breu F, Vögerl K, Morgenstern M, Hrabě de Angelis M, Haucke V, Wieland T, Wagner C, Médard G, Bracher F, Kuster B. Serendipitous and Systematic Chemoproteomic Discovery of MBLAC2, HINT1, and NME1-4 Inhibitors from Histone Deacetylase-Targeting Pharmacophores. ACS Chem Biol 2025. [PMID: 40340313 DOI: 10.1021/acschembio.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Metalloenzyme inhibitors often incorporate a hydroxamic acid moiety to bind the bivalent metal ion cofactor within the enzyme's active site. Recently, inhibitors of Zn2+-dependent histone deacetylases (HDACs), including clinically advanced drugs, have been identified as potent inhibitors of the metalloenzyme MBLAC2. However, selective chemical probes for MBLAC2, which are essential for studying its inhibitory effects, have not yet been reported. To discover highly selective MBLAC2 inhibitors, we conducted chemoproteomic target deconvolution and selectivity profiling of a library of hydroxamic acid-type molecules and other metal-chelating compounds. This screen revealed MBLAC2 as a frequent off-target of supposedly selective HDAC inhibitors, including the HDAC6 inhibitor SW-100. Profiling a focused library of SW-100-related phenylhydroxamic acids led to identifying two compounds, KV-65 and KV-79, which exhibit nanomolar binding affinity for MBLAC2 and over 60-fold selectivity compared to HDACs. Interestingly, some phenylhydroxamic acids were found to bind additional off-targets. We identified KV-30 as the first drug-like inhibitor of the histidine triad nucleotide-binding protein HINT1 and confirmed its mode of inhibition through a cocrystal structure analysis. Furthermore, we report the discovery of the first inhibitors for the undrugged nucleoside diphosphate kinases NME1, NME2, NME3, and NME4. Overall, this study maps the target and off-target landscape of 53 metalloenzyme inhibitors, providing the first selective MBLAC2 inhibitors. Additionally, the discovery of pharmacophores for NME1-4 and HINT1 establishes a foundation for the future design of potent and selective inhibitors for these targets.
Collapse
Affiliation(s)
- Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Shuyao Sha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jigar Paras Sethiya
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Patrycja Szczupak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Rafal Dolot
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Johanna Tushaus
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Polina Prokofeva
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Michael Krauss
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Ferdinand Breu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Katharina Vögerl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Morgenstern
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising 85354, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Volker Haucke
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
2
|
Iyer P, Zhang B, Liu T, Jin M, Hart K, Zhang J, Siegert V, Remke M, Wang X, Yu L, Song J, Venkataraman G, Chan WC, Jia Z, Buchner M, Siddiqi T, Rosen ST, Danilov A, Wang L. MGA deletion leads to Richter's transformation by modulating mitochondrial OXPHOS. Sci Transl Med 2024; 16:eadg7915. [PMID: 39083585 DOI: 10.1126/scitranslmed.adg7915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA (Max gene associated), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion that drive CLL to RT remain elusive. We established an RT mouse model by knockout of Mga in the Sf3b1/Mdr CLL model using CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibited mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). Through RNA sequencing and functional characterization, we identified Nme1 (nucleoside diphosphate kinase) as an Mga target, which drives RT by modulating OXPHOS. Given that NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and electron transport chain complex II substantially prolongs the survival of RT mice in vivo. Our results suggest that the Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a potential therapeutic avenue for RT.
Collapse
MESH Headings
- Animals
- Oxidative Phosphorylation
- Mitochondria/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Gene Deletion
- Humans
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Disease Models, Animal
Collapse
Affiliation(s)
- Prajish Iyer
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Bo Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Tingting Liu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Kevyn Hart
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Jibin Zhang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Viola Siegert
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- Central Institute for Translational Cancer Research, Technische Universität München, Munich 81675, Germany
| | - Marianne Remke
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Xuesong Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Lei Yu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Joo Song
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Wing C Chan
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- Central Institute for Translational Cancer Research, Technische Universität München, Munich 81675, Germany
| | - Tanya Siddiqi
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Steven T Rosen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Alexey Danilov
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, CA 91016, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Proust B, Herak Bosnar M, Ćetković H, Tokarska-Schlattner M, Schlattner U. Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family? Cells 2024; 13:1278. [PMID: 39120309 PMCID: PMC11312278 DOI: 10.3390/cells13151278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | | - Uwe Schlattner
- Univ. Grenoble Alpes, Inserm U1055, Lab. of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
4
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
5
|
Iuso D, Guilliaumet J, Schlattner U, Khochbin S. Nucleoside Diphosphate Kinases Are ATP-Regulated Carriers of Short-Chain Acyl-CoAs. Int J Mol Sci 2024; 25:7528. [PMID: 39062771 PMCID: PMC11277454 DOI: 10.3390/ijms25147528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Nucleoside diphosphate (NDP) kinases 1 and 2 (NME1/2) are well-characterized enzymes known for their NDP kinase activity. Recently, these enzymes have been shown by independent studies to bind coenzyme A (CoA) or acyl-CoA. These findings suggest a hitherto unknown role for NME1/2 in the regulation of CoA/acyl-CoA-dependent metabolic pathways, in tight correlation with the cellular NTP/NDP ratio. Accordingly, the regulation of NME1/2 functions by CoA/acyl-CoA binding has been described, and additionally, NME1/2 have been shown to control the cellular pathways consuming acetyl-CoA, such as histone acetylation and fatty acid synthesis. NME1/2-controlled histone acetylation in turn mediates an important transcriptional response to metabolic changes, such as those induced following a high-fat diet (HFD). This review discusses the CoA/acyl-CoA-dependent NME1/2 activities and proposes that these enzymes be considered as the first identified carriers of CoA/short-chain acyl-CoAs.
Collapse
Affiliation(s)
- Domenico Iuso
- University of Teramo, Department of Veterinary Medicine, 64100 Teramo, Italy
| | - Julie Guilliaumet
- University Grenoble-Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, 38706 La Tronche, France; (J.G.); (S.K.)
| | - Uwe Schlattner
- University Grenoble-Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France;
- Institut Universitaire de France, 75231 Paris, France
| | - Saadi Khochbin
- University Grenoble-Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, 38706 La Tronche, France; (J.G.); (S.K.)
| |
Collapse
|
6
|
Ferrucci V, Lomada S, Wieland T, Zollo M. PRUNE1 and NME/NDPK family proteins influence energy metabolism and signaling in cancer metastases. Cancer Metastasis Rev 2024; 43:755-775. [PMID: 38180572 PMCID: PMC11156750 DOI: 10.1007/s10555-023-10165-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany.
- Medical Faculty Mannheim, Ludolf Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'AOU' Federico II Policlinico, 80131, Naples, Italy.
| |
Collapse
|
7
|
Wang C, Liu Z, Zeng Y, Zhou L, Long Q, Hassan IU, Zhang Y, Qi X, Cai D, Mao B, Lu G, Sun J, Yao Y, Deng Y, Zhao Q, Feng B, Zhou Q, Chan WY, Zhao H. ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation. EMBO Rep 2024; 25:646-671. [PMID: 38177922 PMCID: PMC10897318 DOI: 10.1038/s44319-023-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, 266033, Qingdao, Shandong, China
| | - Yelin Zeng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Imtiaz Ul Hassan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Bingyu Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, 750004, Yinchuan, China
| | - Yonggang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, 150081, Harbin, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Uematsu M, Baskin JM. Chemical Approaches for Measuring and Manipulating Lipids at the Organelle Level. Cold Spring Harb Perspect Biol 2023; 15:a041407. [PMID: 37604586 PMCID: PMC10691496 DOI: 10.1101/cshperspect.a041407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
As the products of complex and often redundant metabolic pathways, lipids are challenging to measure and perturb using genetic tools. Yet by virtue of being the major constituents of cellular membranes, lipids are highly regulated in space and time. Chemists have stepped into this methodological void, developing an array of techniques for the precise quantification and manipulation of lipids at the subcellular, organelle level. Here, we survey the landscape of these methods. For measuring lipids, we summarize the use of metabolic labeling and click chemistry tagging, photoaffinity labeling, isotopic tagging for Raman microscopy, and chemoenzymatic labeling for tracking lipid production and interorganelle transport. For perturbing lipids, we describe synthetic photocaged lipids and membrane editing approaches using optogenetic enzymes for precise manipulation of lipid signaling. Collectively, these chemical and biochemical tools are revealing phenomena and mechanisms underlying lipid functions at the subcellular level.
Collapse
Affiliation(s)
- Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Iuso D, Garcia-Saez I, Couté Y, Yamaryo-Botté Y, Boeri Erba E, Adrait A, Zeaiter N, Tokarska-Schlattner M, Jilkova ZM, Boussouar F, Barral S, Signor L, Couturier K, Hajmirza A, Chuffart F, Bourova-Flin E, Vitte AL, Bargier L, Puthier D, Decaens T, Rousseaux S, Botté C, Schlattner U, Petosa C, Khochbin S. Nucleoside diphosphate kinases 1 and 2 regulate a protective liver response to a high-fat diet. SCIENCE ADVANCES 2023; 9:eadh0140. [PMID: 37672589 PMCID: PMC10482350 DOI: 10.1126/sciadv.adh0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.
Collapse
Affiliation(s)
- Domenico Iuso
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Isabel Garcia-Saez
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Yoshiki Yamaryo-Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Nour Zeaiter
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | | | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Fayçal Boussouar
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Sophie Barral
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Karine Couturier
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Azadeh Hajmirza
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Florent Chuffart
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Anne-Laure Vitte
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Lisa Bargier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Denis Puthier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Cyrille Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, INSERM, Institut Universitaire de France, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Carlo Petosa
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| |
Collapse
|
10
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
11
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
12
|
Lu Y, Liu Q, Fu B, Li P, Xu W. Label-free MIP-SERS biosensor for sensitive detection of colorectal cancer biomarker. Talanta 2023; 258:124461. [PMID: 36963151 DOI: 10.1016/j.talanta.2023.124461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Early diagnosis of colorectal cancer can significantly improve the overall survival rate of patients, thus selective and sensitive detection of biomarkers in serum samples is vital for early detection and dynamic monitoring of cancer. Nucleoside diphosphate kinase NM23-H2 (NDKB) is an important biomarker and therapeutic target for the diagnosis of colorectal cancer (CRC). Here, a label-free and ultrasensitive biosensor for NDKB protein markers is presented for the first time, combining the characteristic capture selectivity of molecularly imprinted polymers (MIPs) and the ultrasensitivity of surface-enhanced Raman Spectroscopy (SERS) technique. The imprinted cavity serves as the only channel for Raman reporter to approach the SERS substrate, providing highly complementary non-covalent binding sites that selectively capture the target protein based on ionic, hydrogen bonding or hydrophobic interactions. Specific recognition of the NDKB protein will perfectly fill the imprinted cavity, which makes it difficult for the Raman reporter to get close to the SERS substrate, and the Raman signal decreases significantly, while the proteins of other structural sizes can not match the imprinted cavity. Through the change of the Raman signal, the proposed biosensor can realize the ultra-sensitive detection of NDKB, and the limit of detection (LOD) is 0.82 pg/mL. Compared with the traditional immunoassay technology, this combined approach with the advantages of low cost, fast response, high sensitivity and selectivity, provides clinical application potential for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Yulin Lu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qunshan Liu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bangguo Fu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiping Xu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui, Hefei, 230001, China.
| |
Collapse
|
13
|
Iyer P, Zhang B, Liu T, Jin M, Hart K, Zhang J, Song J, Chan WC, Siddiqi T, Rosen ST, Danilov A, Wang L. MGA deletion leads to Richter's transformation via modulation of mitochondrial OXPHOS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527502. [PMID: 36798339 PMCID: PMC9934534 DOI: 10.1101/2023.02.07.527502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA ( Max gene associated ), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion driving CLL to RT remain elusive. We established a novel RT mouse model by knockout of Mga in the Sf3b1 / Mdr CLL model via CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibit mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). We identified Nme1 (Nucleoside diphosphate kinase) as a Mga target through RNA sequencing and functional characterization, which drives RT by modulating OXPHOS. As NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and ETC complex II significantly prolongs the survival of RT mice in vivo . Our results suggest that Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a novel therapeutic avenue for RT. Statement of Significance We established a murine RT model through knockout of Mga in an existing CLL model based on co-expression of Sf3b1 -K700E and del ( 13q ). We determined that the MGA/NME1 regulatory axis is essential to the CLL-to-RT transition via modulation of mitochondrial OXPHOS, highlighting this pathway as a novel target for RT treatment.
Collapse
|
14
|
Extracellular Vesicle-Mediated Metastasis Suppressors NME1 and NME2 Modify Lipid Metabolism in Fibroblasts. Cancers (Basel) 2022; 14:cancers14163913. [PMID: 36010906 PMCID: PMC9406105 DOI: 10.3390/cancers14163913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Communication between cancer and stromal cells involves paracrine signalling mediated by extracellular vesicles (EVs). EVs transmit essential factors among cells of the tumour microenvironment. EVs derived from both cancer and stromal cells have been implicated in tumour progression. In this study, we focused on the first identified metastasis suppressor NME1, and on its close homolog NME2, and investigated their function in EVs in the interplay between cancer and stromal cells. Abstract Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
Collapse
|
15
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
16
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|