1
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in Acinetobacter baumannii. mBio 2025; 16:e0322124. [PMID: 39589129 PMCID: PMC11708032 DOI: 10.1128/mbio.03221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii is associated with multidrug-resistant infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We, here, identify proteins that contribute to the fitness of fluoroquinolone-resistant (FQR) strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced lipooligosaccharide (LOS) biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.IMPORTANCEAcinetobacter baumannii is a pathogen that often causes multidrug-resistant infections in healthcare settings, presenting a threat to the efficacy of known therapeutic interventions. Fluoroquinolones such as ciprofloxacin are currently ineffective against a majority of clinical A. baumannii isolates, many of which express pumps that remove this antibiotic class from within the bacterium. Three of these pumps can be found in most clinical isolates, with one of the three often hyperproduced at all times. In this study, we identify proteins that are necessary for the fitness of pump hyperproducers. The identified proteins are necessary to stabilize the outer membrane and allow the cytoplasm to tolerate the accumulation of ions as a consequence of excess pump activity. These results point to strategies for developing therapies that combine known antibiotics with drugs that target proteins important for survival of strains hyper-expressing efflux pumps.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arnold Castaneda
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan C. Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of Determinants that Allow Maintenance of High-Level Fluoroquinolone Resistance in Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560562. [PMID: 38645180 PMCID: PMC11030222 DOI: 10.1101/2023.10.03.560562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acinetobacter baumannii is associated with multidrug resistant (MDR) infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We here identify proteins that contribute to the fitness of FQR strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced LOS biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | | - Jinna Bai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, MA 02135, USA
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
3
|
Potužník JF, Cahova H. If the 5' cap fits (wear it) - Non-canonical RNA capping. RNA Biol 2024; 21:1-13. [PMID: 39007883 PMCID: PMC11253889 DOI: 10.1080/15476286.2024.2372138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Department of Cell Biology, Charles University, Faculty of Science, Prague 2, Czechia
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
4
|
Zegarra V, Mais CN, Freitag J, Bange G. The mysterious diadenosine tetraphosphate (AP4A). MICROLIFE 2023; 4:uqad016. [PMID: 37223742 PMCID: PMC10148737 DOI: 10.1093/femsml/uqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.
Collapse
Affiliation(s)
- Victor Zegarra
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg 35043, Germany
| | - Johannes Freitag
- Department of Biology, Philipps University Marburg, Marburg 35043, Germany
| | - Gert Bange
- Corresponding author. Karl-von-Frisch Strasse 14, 35043 Marburg, Germany. E-mail:
| |
Collapse
|
5
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|