1
|
Yu W, Weber DJ, MacKerell AD. Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation. J Chem Inf Model 2025; 65:3022-3034. [PMID: 39729368 PMCID: PMC11932794 DOI: 10.1021/acs.jcim.4c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA. In the current work, we present and implement a method to use SILCS to identify ligand dissociation pathways, termed "SILCS-Pathway." The A* pathfinding algorithm is utilized to enumerate ligand dissociation pathways between the ligand binding site and the surrounding bulk solvent environment defined on evenly spaced points around the protein based on a Fibonacci lattice. The cost function for the A* algorithm is calculated using the SILCS exclusion maps and the SILCS grid free energy scores, thereby identifying paths that account for local protein flexibility and potential favorable interactions with the ligand. By traversing all evenly distributed bulk solvent points around the protein, we located all possible dissociation pathways and clustered them to identify general ligand unbinding pathways. The procedure is verified by using proteins studied previously with enhanced sampling molecular dynamics (MD) techniques and is shown to be capable of capturing important ligand dissociation routes in a highly computationally efficient manner. The identified pathways will act as the foundation for determining ligand dissociation kinetics using SILCS free energy profiles, which will be described in a subsequent article.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J. Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Li F, Wang L, Li Y, Tian X, Wang J, Shen Z, Zhang J, Zhang L, Li Y. Molecular characterisation and developmental expression analysis of the 5-HT7 receptor in Chrysopa formosa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-12. [PMID: 40098539 DOI: 10.1017/s0007485325000148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a key monoamine neurotransmitter in insects, which regulates neural functions and influences various developmental and physiological processes by binding to its receptors. In this study, we investigate the molecular characteristics, phylogenetic relationships, and expression patterns of the 5-HT7 receptor (Cf5-HT7) in Chrysopa formosa, with a focus on its potential involvement in developmental and diapause regulation. The Cf5-HT7 gene was identified and cloned from the C. formosa transcriptome, revealing an open reading frame of 1788 bp encoding a 596 amino acid protein. Sequence analysis confirmed that Cf5-HT7 is a typical class A G protein-coupled receptor, characterised by seven transmembrane domains and several post-translational modifications, including palmitoylation and N-glycosylation sites. Phylogenetic analysis revealed that Cf5-HT7 is most closely related to the 5-HT7 receptor from Chrysoperla carnea, with high conservation of key motifs involved in ligand binding and receptor activation. Expression analysis across different developmental stages of C. formosa showed that Cf5-HT7 is highly expressed in the first instar larvae, with significant upregulation observed during the prepupal stage. Under diapause-inducing conditions, Cf5-HT7 expression is modulated in a stage-specific manner, showing a marked decrease at the onset of diapause, followed by a significant increase during the mid-to-late diapause maintenance phase. These findings suggest that it plays a pivotal role in regulating development and diapause processes in C. formosa, offering new insights into the molecular mechanisms governing insect life cycle transitions. This study lays the groundwork for future research into the functional roles of 5-HT7 receptors in insect physiology and their potential applications in manipulating diapause.
Collapse
Affiliation(s)
- Fei Li
- Engineering Research Center of Natural Enemies, Jilin Province International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Institute of Biological Control, Jilin Agricultural University, Changchun, PRChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Longrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Yujia Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Xuyang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Jiayue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Jilin Province International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Institute of Biological Control, Jilin Agricultural University, Changchun, PRChina
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PRChina
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PRChina
| |
Collapse
|
3
|
Zhao Q, Ran XQ, Yan ZY, Qian HL, Yan XP. Histamine-modulated wettability switching in G-protein-coupled receptor inspired nanochannel for potential drug screening and biosensing. Nat Commun 2025; 16:1820. [PMID: 39979281 PMCID: PMC11842845 DOI: 10.1038/s41467-025-57064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Histamine receptor, one typical G-protein-coupled receptor (GPCR), can be activated by histamine and form the most important drug targets involved in allergy and reflux diseases. Here, we report an artificial model to mimic the wettability-induced activation of natural GPCRs via histamine-modulated enhancement of wettability in a bionic nanochannel. The artificial receptor is constructed by introducing key recognition factors in nature, L-lysine modified fluorescein isothiocyanate (L-lysine-FITC), into a conical nanochannel. The conductance of the L-lysine-FITC-modified nanochannel increases with the histamine-induced wettability enhancement due to the various interactions between histamine and L-lysine-FITC molecules including hydrogen bonding and π-π interactions, as well as the proton transfer reaction. This study represents a crucial step towards the design of artificial GPCRs with wettability-induced activation and provides an opportunity to construct artificial models of GPCRs in a non-lipid environment. The developed artificial receptor has great potential application in medicinal chemistry, biosensors, and healthcare systems.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Bachler ZT, Brown MF. Hidden water's influence on rhodopsin activation. Biophys J 2024; 123:4167-4179. [PMID: 39550612 PMCID: PMC11700366 DOI: 10.1016/j.bpj.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.
Collapse
Affiliation(s)
- Zachary T Bachler
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
5
|
Sirbu A, Bathe-Peters M, Kumar JLM, Inoue A, Lohse MJ, Annibale P. Cell swelling enhances ligand-driven β-adrenergic signaling. Nat Commun 2024; 15:7822. [PMID: 39242606 PMCID: PMC11379887 DOI: 10.1038/s41467-024-52191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
G protein-coupled receptors' conformational landscape can be affected by their local, microscopic interactions within the cell plasma membrane. We employ here a pleiotropic stimulus, namely osmotic swelling, to alter the cortical environment within intact cells and monitor the response in terms of receptor function and downstream signaling. We observe that in osmotically swollen cells the β2-adrenergic receptor, a prototypical GPCR, favors an active conformation, resulting in cAMP transient responses to adrenergic stimulation that have increased amplitude. The results are validated in primary cell types such as adult cardiomyocytes, a model system where swelling occurs upon ischemia-reperfusion injury. Our results suggest that receptors' function is finely modulated by their biophysical context, and specifically that osmotic swelling acts as a potentiator of downstream signaling, not only for the β2-adrenergic receptor, but also for other receptors, hinting at a more general regulatory mechanism.
Collapse
Affiliation(s)
- Alexei Sirbu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jothi L M Kumar
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich-Planegg, Germany
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
6
|
Aguilar-Pineda J, González-Melchor M. Influence of the Water Model on the Structure and Interactions of the GPR40 Protein with the Lipid Membrane and the Solvent: Rigid versus Flexible Water Models. J Chem Theory Comput 2024; 20:6369-6387. [PMID: 38991114 PMCID: PMC11270832 DOI: 10.1021/acs.jctc.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
G protein-coupled receptors (GPCR) are responsible for modulating various physiological functions and are thus related to the pathophysiology of different diseases. Being potential therapeutic targets, multiple computational methodologies have been developed to analyze their behavior and interactions with other species. The solvent, on the other hand, has received much less attention. In this work, we analyzed the effect of four explicit water models on the structure and interactions of the GPR40 receptor in its apo form. We employed the rigid SPC/E and TIP4P models, and their flexible versions, the FBA/ϵ and TIP4P/ϵflex. We explored the structural changes and their correlation with some bulk dynamic properties of water. Our results showed an adverse effect on the conservation of the secondary structure of the receptor with all the models due to the breaking of the intramolecular hydrogen bond network, being more evident for the TIP4P models. Notably, all four models brought the receptor to states similar to the active one, modifying the intracellular part of the TM5 and TM6 domains in a "hinge" type movement, allowing the opening of the structure. Regarding the dynamic properties, the rigid models showed results comparable to those obtained in other studies on membrane systems. However, flexible models exhibit disparities in the molecular representation of systems. Surprisingly, the FBA/ϵ model improves the molecular picture of several properties, even though their agreement with bulk diffusion is poorer. These findings reinforce our idea that exploring other water models or improving the current ones, to better represent the membrane interface, can lead to a positive impact on the description of the signal transduction mechanisms and the search of new drugs by targeting these receptors.
Collapse
Affiliation(s)
- Jorge
Alberto Aguilar-Pineda
- Instituto de Física
“Luis Rivera Terrazas”, Benemérita Universidad
Autónoma de Puebla, Av San Claudio, Cd Universitaria, Apdo. Postal
J-48, Puebla 72570, México
| | - Minerva González-Melchor
- Instituto de Física
“Luis Rivera Terrazas”, Benemérita Universidad
Autónoma de Puebla, Av San Claudio, Cd Universitaria, Apdo. Postal
J-48, Puebla 72570, México
| |
Collapse
|
7
|
Bertalan É, Rodrigues MJ, Schertler GFX, Bondar AN. Graph-based algorithms to dissect long-distance water-mediated H-bond networks for conformational couplings in GPCRs. Br J Pharmacol 2024. [PMID: 38636539 DOI: 10.1111/bph.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/03/2024] [Accepted: 03/02/2024] [Indexed: 04/20/2024] Open
Abstract
Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.
Collapse
Affiliation(s)
- Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | | | | | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany
- Faculty of Physics, University of Bucharest, Măgurele, Romania
| |
Collapse
|
8
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Thakur N, Ray AP, Lyman E, Gao ZG, Jacobson KA, Eddy MT. Membrane Mimetic-Dependence of GPCR Energy Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562552. [PMID: 37905159 PMCID: PMC10614885 DOI: 10.1101/2023.10.16.562552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Protein function strongly depends on temperature, which is related to temperature-dependent changes in the equilibria of protein conformational states. We leveraged variable-temperature 19F-NMR spectroscopy to interrogate the temperature dependence of the conformational landscape of the human A2A adenosine receptor (A2AAR), a class A GPCR. Temperature-induced changes in the conformational equilibria of A2AAR in lipid nanodiscs were markedly dependent on the efficacy of bound drugs. While antagonist complexes displayed only modest changes as the temperature rose, both full and partial agonist complexes exhibited substantial increases in the active state population. Importantly, the temperature-dependent response of complexes with both full and partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. In striking contrast to observations within lipid nanodiscs, in detergent micelles the active state population exhibited different behavior for A2AAR complexes with both full and partial agonists. This underscores the importance of the protein environment in understanding the thermodynamics of GPCR activation.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Kapur B, Baldessari F, Lazaratos M, Nar H, Schnapp G, Giorgetti A, Bondar AN. Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68. Comput Struct Biotechnol J 2023; 21:4370-4384. [PMID: 37711190 PMCID: PMC10498176 DOI: 10.1016/j.csbj.2023.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton-sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site.
Collapse
Affiliation(s)
- Bhav Kapur
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
- Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | | | - Michalis Lazaratos
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Herbert Nar
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Gisela Schnapp
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alejandro Giorgetti
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52525 Jülich, Germany
| | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52525 Jülich, Germany
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania
| |
Collapse
|
11
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
12
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
13
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
14
|
Chawla U, Chopra D. Structural Advancement in Shoc2‐MAPK Signaling Pathways in the Treatment of Cancer and Other Diseases. ChemistrySelect 2022. [DOI: 10.1002/slct.202203791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Udeep Chawla
- Innovation and Incubation Centre for Entrepreneurship Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
- The University of Arizona, Department of Chemistry and Biochemistry Tucson AZ85721 United States
| | - Deepak Chopra
- Innovation and Incubation Centre for Entrepreneurship Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
15
|
Sarhangi SM, Matyushov DV. Theory of Protein Charge Transfer: Electron Transfer between Tryptophan Residue and Active Site of Azurin. J Phys Chem B 2022; 126:10360-10373. [PMID: 36459590 DOI: 10.1021/acs.jpcb.2c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
One reaction step in the conductivity relay of azurin, electron transfer between the Cu-based active site and the tryptophan residue, is studied theoretically and by classical molecular dynamics simulations. Oxidation of tryptophan results in electrowetting of this residue. This structural change makes the free energy surfaces of electron transfer nonparabolic as described by the Q-model of electron transfer. We analyze the medium dynamical effect on protein electron transfer produced by coupled Stokes-shift dynamics and the dynamics of the donor-acceptor distance modulating electron tunneling. The equilibrium donor-acceptor distance falls in the plateau region of the rate constant, where it is determined by the protein-water dynamics, and the probability of electron tunneling does not affect the rate. The crossover distance found here puts most intraprotein electron-transfer reactions under the umbrella of dynamical control. The crossover between the medium-controlled and tunneling-controlled kinetics is combined with the effect of the protein-water medium on the activation barrier to formulate principles of tunability of protein-based charge-transfer chains. The main principle in optimizing the activation barrier is the departure from the Gaussian-Gibbsian statistics of fluctuations promoting activated transitions. This is achieved either by incomplete (nonergodic) sampling, breaking the link between the Stokes-shift and variance reorganization energies, or through wetting-induced structural changes of the enzyme's active site.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| |
Collapse
|