1
|
Huang H, Wan P, Chen Y, Luo X, Zhu Y, Lin W, Chen Y, Zeng Z. Phenotypic and genetic stepwise changes in Staphylococcus aureus during in vitro adaptive laboratory evolution under the selective pressure of tigecycline. Antimicrob Agents Chemother 2025; 69:e0007225. [PMID: 40135899 PMCID: PMC12057350 DOI: 10.1128/aac.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Compared with tigecycline-resistant gram-negative bacteria, tigecycline adaptive laboratory evolution (ALE) has been preliminarily performed in Staphylococcus aureus. This study aims to develop higher-level tigecycline-resistant S. aureus mutants (TRSAms) and explore the mechanisms behind decreasing susceptibility to tigecycline. In this study, S. aureus strains were cultured in serial-increasing concentrations of tigecycline and successfully obtained high-level TRSAms. Different phenotypic changes in high-level TRSAms were assessed by growth rate measurement, autolysis assays, mutant frequency determination, and virulence evaluations in vivo and in vitro. The phenotypes of fitness cost showed significant differences in these high-level TRSAms. Whole-genome sequencing analysis detected synchronous mutations between yycH and fakA repeatedly in three high-level TRSAms from different parent strains. Further cloning experiments demonstrated that the complementary yycH gene increased susceptibility to tigecycline in TRSAms, and deletion mutant construction and complementation of Glu283Ter YycH confirm its critical role in tigecycline susceptibility in S. aureus. We also scanned the global genome to evaluate clinical importance; mutations on rpsJ detected in this study are associated with the MRSA ST5-t002 isolates and omadacycline selective mutants. In summary, we described a complete trajectory of phenotypic and genotypic changes in the ALE process for decreasing susceptibility to tigecycline in S. aureus. It is considered that the yycH gene has been involved in decreasing tigecycline susceptibility in S. aureus.
Collapse
Affiliation(s)
- Honghao Huang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Peng Wan
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyue Luo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yizhen Zhu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanxin Lin
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenling Zeng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Abdelmalek N, Yousief SW, Bojer MS, Alobaidallah MSA, Olsen JE, Paglietti B. The Secondary Resistome of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Antibiotics (Basel) 2025; 14:112. [PMID: 40001356 PMCID: PMC11851648 DOI: 10.3390/antibiotics14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Therapeutic strategies for methicillin-resistant Staphylococcus aureus (MRSA) are increasingly limited due to the ability of the pathogen to evade conventional treatments such as vancomycin and daptomycin. This challenge has shifted the focus towards novel strategies, including the resensitization of β-lactams, which are still used as first-line treatments for methicillin-susceptible Staphylococcus aureus (MSSA). To achieve this, it is essential to identify the secondary resistome associated with the clinically relevant β-lactam antibiotics. Methods: Transposon-Directed Insertion Site Sequencing (TraDIS) was employed to assess conditional essentiality by analyzing the depletion of mutants from a highly saturated transposon library of MRSA USA300 JE2 exposed to ½ minimal inhibitory concentration (MIC) of oxacillin or cefazolin. Results: TraDIS analysis led to the identification of 52 shared fitness genes involved in β-lactam resistance that are primarily linked to cell wall metabolism and regulatory systems. Among these, both known resistance factors and novel conditionally essential genes were highlighted. As proof of concept, transposon mutants corresponding to nine genes (sagB, SAUSA300_0657, SAUSA300_0957, SAUSA300_1683, SAUSA300_1964, SAUSA300_1966, SAUSA300_1967, SAUSA300_1692, and mazF) were grown in the presence of β-lactam antibiotics and their MICs were determined. All mutants showed significantly reduced resistance to β-lactam antibiotics. Conclusions: This comprehensive genome-wide investigation provides novel insights into the resistance mechanisms of β-lactam antibiotics, and suggests potential therapeutic targets for combination therapies with helper drugs.
Collapse
Affiliation(s)
- Nader Abdelmalek
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| | - Sally Waheed Yousief
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
| | - Mosaed Saleh A. Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| |
Collapse
|
3
|
Martins A, Judák F, Farkas Z, Szili P, Grézal G, Csörgő B, Czikkely MS, Maharramov E, Daruka L, Spohn R, Balogh D, Daraba A, Juhász S, Vágvölgyi M, Hunyadi A, Cao Y, Sun Z, Li X, Papp B, Pál C. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Sci Transl Med 2025; 17:eadl2103. [PMID: 39772773 DOI: 10.1126/scitranslmed.adl2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in Staphylococcus aureus. Cross-resistance was detected between such candidates and antibiotics currently in clinical use, including vancomycin, daptomycin, and the promising antibiotic candidate teixobactin. These patterns were driven by overlapping molecular mechanisms through mutations in regulatory systems. In particular, teixobactin-resistant bacteria displayed clinically relevant multidrug resistance and retained their virulence in an invertebrate infection model, raising concerns. More generally, we demonstrate that putative resistance mutations against candidate antibiotics are already present in natural bacterial populations. Therefore, antibiotic resistance in nature may evolve readily from the selection of preexisting genetic variants. Our work highlights the importance of predicting future evolution of resistance to antibiotic candidates at an early stage of drug development.
Collapse
Affiliation(s)
- Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Fanni Judák
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Szeged, Szeged HU-6720, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged HU-6722, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged HU-6722, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged HU-6726, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Cancer Microbiome Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged HU-6728, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged HU-6720, Hungary
| | - Yihui Cao
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| |
Collapse
|
4
|
Zhang Y, Zhao J, Sun X, Zheng Y, Chen T, Wang Z. Leveraging independent component analysis to unravel transcriptional regulatory networks: A critical review and future directions. Biotechnol Adv 2025; 78:108479. [PMID: 39577573 DOI: 10.1016/j.biotechadv.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects. In contrast, Independent Component Analysis (ICA) has emerged as a powerful analysis algorithm for modularizing independently regulated gene sets in TRNs, allowing it to account for both global and local co-expression effects. In this review, we comprehensively summarize the application of ICA in unraveling TRNs and highlight the research progress in three key aspects: (1) extending TRNs with iModulon analysis; (2) elucidating the regulatory mechanisms triggered by environmental perturbation; and (3) exploring the mechanisms of transcriptional regulation triggered by changes in microbial physiological state. At the end of this review, we also address the challenges facing ICA in TRN analysis and outline future research directions to promote the advancement of ICA-based transcriptomics analysis in biotechnology and related fields.
Collapse
Affiliation(s)
- Yuhan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxiao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Science, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Peng H, Rao Y, Shang W, Yang Y, Tan L, Liu L, Hu Z, Wang Y, Huang X, Liu H, Li M, Guo Z, Chen J, Yang Y, Wu J, Yuan W, Hu Q, Rao X. Vancomycin‐intermediate Staphylococcus aureus employs CcpA‐GlmS metabolism regulatory cascade to resist vancomycin. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
AbstractVancomycin (VAN)‐intermediate Staphylococcus aureus (VISA) is a critical cause of VAN treatment failure worldwide. Multiple genetic changes are reportedly associated with VISA formation, whereas VISA strains often present common phenotypes, such as reduced autolysis and thickened cell wall. However, how mutated genes lead to VISA common phenotypes remains unclear. Here, we show a metabolism regulatory cascade (CcpA‐GlmS), whereby mutated two‐component systems (TCSs) link to the common phenotypes of VISA. We found that ccpA deletion decreased VAN resistance in VISA strains with diverse genetic backgrounds. Metabolic alteration in VISA was associated with ccpA upregulation, which was directly controlled by TCSs WalKR and GraSR. RNA‐sequencing revealed the crucial roles of CcpA in changing the carbon flow and nitrogen flux of VISA to promote VAN resistance. A gate enzyme (GlmS) that drives carbon flow to the cell wall precursor biosynthesis was upregulated in VISA. CcpA directly controlled glmS expression. Blocking CcpA sensitized VISA strains to VAN treatment in vitro and in vivo. Overall, this work uncovers a link between the formation of VISA phenotypes and commonly mutated genes. Inhibition of CcpA‐GlmS cascade is a promising strategy to restore the therapeutic efficiency of VAN against VISA infections.
Collapse
Affiliation(s)
- Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao Hospital Army Medical University Chongqing China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Lu Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Mengyang Li
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| | - Zuwen Guo
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Juan Chen
- Department of Pharmacy, Xinqiao Hospital Army Medical University Chongqing China
| | - Yuhua Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine Guangzhou Medical University Guangzhou China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing Chongqing China
- Department of Microbiology, School of Medicine Chongqing University Chongqing China
| |
Collapse
|
6
|
Phaneuf PV, Kim SH, Rychel K, Rode C, Beulig F, Palsson BO, Yang L. Meta-analysis Driven Strain Design for Mitigating Oxidative Stresses Important in Biomanufacturing. ACS Synth Biol 2024; 13:2045-2059. [PMID: 38934464 PMCID: PMC11264330 DOI: 10.1021/acssynbio.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
As the availability of data sets increases, meta-analysis leveraging aggregated and interoperable data types is proving valuable. This study leveraged a meta-analysis workflow to identify mutations that could improve robustness to reactive oxygen species (ROS) stresses using an industrially important melatonin production strain as an example. ROS stresses often occur during cultivation and negatively affect strain performance. Cellular response to ROS is also linked to the SOS response and resistance to pH fluctuations, which is important to strain robustness in large-scale biomanufacturing. This work integrated more than 7000 E. coli adaptive laboratory evolution (ALE) mutations across 59 experiments to statistically associate mutated genes to 2 ROS tolerance ALE conditions from 72 unique conditions. Mutant oxyR, fur, iscR, and ygfZ were significantly associated and hypothesized to contribute fitness in ROS stress. Across these genes, 259 total mutations were inspected in conjunction with transcriptomics from 46 iModulon experiments. Ten mutations were chosen for reintroduction based on mutation clustering and coinciding transcriptional changes as evidence of fitness impact. Strains with mutations reintroduced into oxyR, fur, iscR, and ygfZ exhibited increased tolerance to H2O2 and acid stress and reduced SOS response, all of which are related to ROS. Additionally, new evidence was generated toward understanding the function of ygfZ, an uncharacterized gene. This meta-analysis approach utilized aggregated and interoperable multiomics data sets to identify mutations conferring industrially relevant phenotypes with the least drawbacks, describing an approach for data-driven strain engineering to optimize microbial cell factories.
Collapse
Affiliation(s)
- PV Phaneuf
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - SH Kim
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - K Rychel
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
| | - C Rode
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - F Beulig
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - BO Palsson
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
- Bioinformatics
and Systems Biology Program, University
of California, San Diego, La Jolla ,California92093-0021, United States
- Department
of Pediatrics, University of California,
San Diego, La Jolla ,California 92093-0412, United States
| | - L Yang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| |
Collapse
|
7
|
Fait A, Silva SF, Abrahamsson JÅH, Ingmer H. Staphylococcus aureus response and adaptation to vancomycin. Adv Microb Physiol 2024; 85:201-258. [PMID: 39059821 DOI: 10.1016/bs.ampbs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is an increasing challenge for the human pathogen Staphylococcus aureus. Methicillin-resistant S. aureus (MRSA) clones have spread globally, and a growing number display decreased susceptibility to vancomycin, the favoured antibiotic for treatment of MRSA infections. These vancomycin-intermediate S. aureus (VISA) or heterogeneous vancomycin-intermediate S. aureus (hVISA) strains arise from accumulation of a variety of point mutations, leading to cell wall thickening and reduced vancomycin binding to the cell wall building block, Lipid II, at the septum. They display only minor changes in vancomycin susceptibility, with varying tolerance between cells in a population, and therefore, they can be difficult to detect. In this review, we summarize current knowledge of VISA and hVISA. We discuss the role of genetic strain background or epistasis for VISA development and the possibility of strains being 'transient' VISA with gene expression changes mediated by, for example, VraTSR, GraXSR, or WalRK signal transduction systems, leading to temporary vancomycin tolerance. Additionally, we address collateral susceptibility to other antibiotics than vancomycin. Specifically, we estimate how mutations in rpoB, encoding the β-subunit of the RNA polymerase, affect overall protein structure and compare changes with rifampicin resistance. Ultimately, such in-depth analysis of VISA and hVISA strains in terms of genetic and transcriptional changes, as well as changes in protein structures, may pave the way for improved detection and guide antibiotic therapy by revealing strains at risk of VISA development. Such tools will be valuable for keeping vancomycin an asset also in the future.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Stephanie Fulaz Silva
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Crozier D, Gray JM, Maltas JA, Bonomo RA, Burke ZDC, Card KJ, Scott JG. The evolution of diverse antimicrobial responses in vancomycin-intermediate Staphylococcus aureus and its therapeutic implications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569373. [PMID: 38077036 PMCID: PMC10705500 DOI: 10.1101/2023.11.30.569373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Staphylococcus aureus causes endocarditis, osteomyelitis, and bacteremia. Clinicians often prescribe vancomycin as an empiric therapy to account for methicillin-resistant S. aureus (MRSA) and narrow treatment based on culture susceptibility results. However, these results reflect a single time point before empiric treatment and represent a limited subset of the total bacterial population within the patient. Thus, while they may indicate that the infection is susceptible to a particular drug, this recommendation may no longer be accurate during therapy. Here, we addressed how antibiotic susceptibility changes over time by accounting for evolution. We evolved 18 methicillin-susceptible S. aureus (MSSA) populations under increasing vancomycin concentrations until they reached intermediate resistance levels. Sequencing revealed parallel mutations that affect cell membrane stress response and cell-wall biosynthesis. The populations exhibited repeated cross-resistance to daptomycin and varied responses to meropenem, gentamicin, and nafcillin. We accounted for this variability by deriving likelihood estimates that express a population's probability of exhibiting a drug response following vancomycin treatment. Our results suggest antistaphylococcal penicillins are preferable first-line treatments for MSSA infections but also highlight the inherent uncertainty that evolution poses to effective therapies. Infections may take varied evolutionary paths; therefore, considering evolution as a probabilistic process should inform our therapeutic choices.
Collapse
|
9
|
Cepeda JG, Perona FL, Sanchez IB, Calvo JC, Rico A, Loeches B. Case report: Prosthetic aortic valve endocarditis due to Staphylococcus epidermidis with acquired resistance in the walK gene. Diagn Microbiol Infect Dis 2024; 108:116132. [PMID: 38056190 DOI: 10.1016/j.diagmicrobio.2023.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
We report the case of a patient with infective endocarditis on a prosthetic aortic valve due to Staphylococcus epidermidis, not a candidate for prosthetic replacement surgery. After three months of supressive treatment with dalbavancin, fever reappears, with growth of S. epidermidis. Susceptibility testing showed new-onset resistance to dalbavancin, with a mutation in walK gene.
Collapse
Affiliation(s)
- Javier Gonzalez Cepeda
- Internal Medicine, La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain.
| | - Fernando Lázaro Perona
- Microbiology, La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain
| | - Ivan Bloise Sanchez
- Microbiology, La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain
| | - Juana Cacho Calvo
- Microbiology, La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain
| | - Alicia Rico
- Clinical Microbiology and Infectious Diseases Unit. La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain
| | - Belen Loeches
- Clinical Microbiology and Infectious Diseases Unit. La Paz University Hospital. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECC), P.° de la Castellana, 261, 28046 Madrid, Spain
| |
Collapse
|
10
|
Xiao Y, Wan C, Wu X, Xu Y, Chen Y, Rao L, Wang B, Shen L, Han W, Zhao H, Shi J, Zhang J, Song Z, Yu F. Novel small-molecule compound YH7 inhibits the biofilm formation of Staphylococcus aureus in a sarX-dependent manner. mSphere 2024; 9:e0056423. [PMID: 38170984 PMCID: PMC10826350 DOI: 10.1128/msphere.00564-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
The emergence of antibiotic-resistant and biofilm-producing Staphylococcus aureus isolates presents major challenges for treating staphylococcal infections. Biofilm inhibition is an important anti-virulence strategy. In this study, a novel maleimide-diselenide hybrid compound (YH7) was synthesized and demonstrated remarkable antimicrobial activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in both planktonic cultures and biofilms. The minimum inhibitory concentration (MIC) of YH7 for S. aureus isolates was 16 µg/mL. Quantification of biofilms demonstrated that the sub-MIC (4 µg/mL) of YH7 significantly inhibits biofilm formation in both MSSA and MRSA. Confocal laser scanning microscopy analysis further confirmed the biofilm inhibitory potential of YH7. YH7 also significantly suppressed bacterial adherence to A549 cells. Moreover, YH7 treatment significantly inhibited S. aureus colonization in nasal tissue of mice. Preliminary mechanistic studies revealed that YH7 exerted potent biofilm-suppressing effects by inhibiting polysaccharide intercellular adhesin (PIA) synthesis, rather than suppressing bacterial autolysis. Real-time quantitative PCR data indicated that YH7 downregulated biofilm formation-related genes (clfA, fnbA, icaA, and icaD) and the global regulatory gene sarX, which promotes PIA synthesis. The sarX-dependent antibiofilm potential of YH7 was validated by constructing S. aureus NCTC8325 sarX knockout and complementation strains. Importantly, YH7 demonstrated a low potential to induce drug resistance in S. aureus and exhibited non-toxic to rabbit erythrocytes, A549, and BEAS-2B cells at antibacterial concentrations. In vivo toxicity assays conducted on Galleria mellonella further confirmed that YH7 is biocompatible. Overall, YH7 demonstrated potent antibiofilm activity supports its potential as an antimicrobial agent against S. aureus biofilm-related infections. IMPORTANCE Biofilm-associated infections, characterized by antibiotic resistance and persistence, present a formidable challenge in healthcare. Traditional antibacterial agents prove inadequate against biofilms. In this study, the novel compound YH7 demonstrates potent antibiofilm properties by impeding the adhesion and the polysaccharide intercellular adhesin production of Staphylococcus aureus. Notably, its exceptional efficacy against both methicillin-resistant and methicillin-susceptible strains highlights its broad applicability. This study highlights the potential of YH7 as a novel therapeutic agent to address the pressing issue of biofilm-driven infections.
Collapse
Affiliation(s)
- Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiaocui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Ba X, Raisen CL, Restif O, Cavaco LM, Vingsbo Lundberg C, Lee JYH, Howden BP, Bartels MD, Strommenger B, Harrison EM, Larsen AR, Holmes MA, Larsen J. Cryptic susceptibility to penicillin/β-lactamase inhibitor combinations in emerging multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages. Nat Commun 2023; 14:6479. [PMID: 37838722 PMCID: PMC10576800 DOI: 10.1038/s41467-023-42245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Global spread of multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages underscores the need for new therapeutic strategies. Here we show that many S. epidermidis isolates belonging to these lineages display cryptic susceptibility to penicillin/β-lactamase inhibitor combinations under in vitro conditions, despite carrying the methicillin resistance gene mecA. Using a mouse thigh model of S. epidermidis infection, we demonstrate that single-dose treatment with amoxicillin/clavulanic acid significantly reduces methicillin-resistant S. epidermidis loads without leading to detectable resistance development. On the other hand, we also show that methicillin-resistant S. epidermidis is capable of developing increased resistance to amoxicillin/clavulanic acid during long-term in vitro exposure to these drugs. These findings suggest that penicillin/β-lactamase inhibitor combinations could be a promising therapeutic candidate for treatment of a high proportion of methicillin-resistant S. epidermidis infections, although the in vivo risk of resistance development needs to be further addressed before they can be incorporated into clinical trials.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Claire L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lina Maria Cavaco
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jean Y H Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mette D Bartels
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birgit Strommenger
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jesper Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
12
|
Fait A, Andersson DI, Ingmer H. Evolutionary history of Staphylococcus aureus influences antibiotic resistance evolution. Curr Biol 2023; 33:3389-3397.e5. [PMID: 37494936 DOI: 10.1016/j.cub.2023.06.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Antibiotic resistance often confers a fitness cost to the resistant cell and thus raises key questions of how resistance is maintained in the absence of antibiotics and, if lost, whether cells are genetically primed for re-evolving resistance. To address these questions, we have examined vancomycin-intermediate Staphylococcus aureus (VISA) strains that arise during vancomycin therapy. VISA strains harbor a broad spectrum of mutations, and they are known to be unstable both in patients and in the laboratory. Here, we show that loss of resistance in VISA strains is correlated with a fitness increase and is attributed to adaptive mutations, leaving the initial VISA-adaptive mutations intact. Importantly, upon a second exposure to vancomycin, such revertants evolve significantly faster to become VISA, and they reach higher resistance levels than vancomycin-naive cells. Further, we find that sub-lethal concentrations of vancomycin stabilize the VISA phenotype, as do the human β-defensin 3 (hBD-3) and the bacteriocin nisin that both, like vancomycin, bind to the peptidoglycan building block, lipid II. Thus, factors binding lipid II may stabilize VISA both in vivo and in vitro, and in case resistance is lost, mutations remain that predispose to resistance development. These findings may explain why VISA infections often are re-occurring and suggest that previous vancomycin adaptation should be considered a risk factor when deciding on antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
13
|
Worthan SB, McCarthy RDP, Behringer MG. Case Studies in the Assessment of Microbial Fitness: Seemingly Subtle Changes Can Have Major Effects on Phenotypic Outcomes. J Mol Evol 2023; 91:311-324. [PMID: 36752825 PMCID: PMC10276084 DOI: 10.1007/s00239-022-10087-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Robert D P McCarthy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Gostev V, Kalinogorskaya O, Sopova J, Sulian O, Chulkova P, Velizhanina M, Tsvetkova I, Ageevets I, Ageevets V, Sidorenko S. Adaptive Laboratory Evolution of Staphylococcus aureus Resistance to Vancomycin and Daptomycin: Mutation Patterns and Cross-Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050928. [PMID: 37237831 DOI: 10.3390/antibiotics12050928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Vancomycin and daptomycin are first-line drugs for the treatment of complicated methicillin-resistant Staphylococcus aureus (MRSA) infections, including bacteremia. However, their effectiveness is limited not only by their resistance to each antibiotic but also by their associated resistance to both drugs. It is unknown whether novel lipoglycopeptides can overcome this associated resistance. Resistant derivatives from five S. aureus strains were obtained during adaptive laboratory evolution with vancomycin and daptomycin. Both parental and derivative strains were subjected to susceptibility testing, population analysis profiles, measurements of growth rate and autolytic activity, and whole-genome sequencing. Regardless of whether vancomycin or daptomycin was selected, most of the derivatives were characterized by a reduced susceptibility to daptomycin, vancomycin, telavancin, dalbavancin, and oritavancin. Resistance to induced autolysis was observed in all derivatives. Daptomycin resistance was associated with a significant reduction in growth rate. Resistance to vancomycin was mainly associated with mutations in the genes responsible for cell wall biosynthesis, and resistance to daptomycin was associated with mutations in the genes responsible for phospholipid biosynthesis and glycerol metabolism. However, mutations in walK and mprF were detected in derivatives selected for both antibiotics.
Collapse
Affiliation(s)
- Vladimir Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, 195067 Saint Petersburg, Russia
| | - Olga Kalinogorskaya
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Julia Sopova
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, 198504 Saint Petersburg, Russia
| | - Ofelia Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Polina Chulkova
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Maria Velizhanina
- Center of Transgenesis and Genome Editing, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 Saint Petersburg, Russia
| | - Irina Tsvetkova
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Irina Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Vladimir Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
| | - Sergey Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, 197022 Saint Petersburg, Russia
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, 195067 Saint Petersburg, Russia
| |
Collapse
|
15
|
Mashayamombe M, Carda-Diéguez M, Mira A, Fitridge R, Zilm PS, Kidd SP. Subpopulations in Strains of Staphylococcus aureus Provide Antibiotic Tolerance. Antibiotics (Basel) 2023; 12:antibiotics12020406. [PMID: 36830316 PMCID: PMC9952555 DOI: 10.3390/antibiotics12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ability of Staphylococcus aureus to colonise different niches across the human body is linked to an adaptable metabolic capability, as well as its ability to persist within specific tissues despite adverse conditions. In many cases, as S. aureus proliferates within an anatomical niche, there is an associated pathology. The immune response, together with medical interventions such as antibiotics, often removes the S. aureus cells that are causing this disease. However, a common issue in S. aureus infections is a relapse of disease. Within infected tissue, S. aureus exists as a population of cells, and it adopts a diversity of cell types. In evolutionary biology, the concept of "bet-hedging" has established that even in positive conditions, there are members that arise within a population that would be present as non-beneficial, but if those conditions change, these traits could allow survival. For S. aureus, some of these cells within an infection have a reduced fitness, are not rapidly proliferating or are the cause of an active host response and disease, but these do remain even after the disease seems to have been cleared. This is true for persistence against immune responses but also as a continual presence in spite of antibiotic treatment. We propose that the constant arousal of suboptimal populations at any timepoint is a key strategy for S. aureus long-term infection and survival. Thus, understanding the molecular basis for this feature could be instrumental to combat persistent infections.
Collapse
Affiliation(s)
- Matipaishe Mashayamombe
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
- School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden
| | - Robert Fitridge
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Peter S. Zilm
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Stephen P. Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Centre for Antimicrobial Resistance Ecology (ACARE), The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| |
Collapse
|