1
|
Gonçalves-Carneiro D, Mastrocola E, Lei X, Bieniasz PD. Modulation of host gene expression by the zinc finger antiviral protein. Proc Natl Acad Sci U S A 2025; 122:e2420819122. [PMID: 40146858 PMCID: PMC12002351 DOI: 10.1073/pnas.2420819122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
The zinc finger antiviral protein (ZAP) depletes nonself RNAs through recognition of their elevated CpG dinucleotide content. CpG dinucleotides are sparse in most endogenous mammalian mRNAs, but a subset might potentially be modulated by ZAP. While CpG frequency alone is insufficient to predict ZAP-regulation, we developed an algorithm using experimentally determined compositional features to predict which endogenous mRNAs may be ZAP-regulated. Using ZAP-knockout mice, we demonstrate that levels of many host mRNAs that are algorithmically predicted ZAP targets are indeed increased when ZAP is absent. ZAP is interferon-inducible, and we also identify genes that are downregulated by ZAP during an innate immune response. Many ZAP-regulated gene products are extracellular matrix or of nucleosome components, whose ZAP-mediated control is conserved in human cells. Overall, we provide a tool for the prediction of ZAP target genes and reveal host mRNAs that are ZAP-regulated.
Collapse
Affiliation(s)
- Daniel Gonçalves-Carneiro
- Department of Infectious Disease, St Mary’s Medical School, Imperial College London, LondonW2 1NY, United Kingdom
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Emily Mastrocola
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Xiao Lei
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Hagai T, Sironi M. Evolutionary analysis of ZAP and its cofactors identifies intrinsically disordered regions as central elements in host-pathogen interactions. Comput Struct Biotechnol J 2024; 23:3143-3154. [PMID: 39234301 PMCID: PMC11372611 DOI: 10.1016/j.csbj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
3
|
Redondo-Calvo F, Rabanal-Ruiz Y, Verdugo-Moreno G, Bejarano-Ramírez N, Bodoque-Villar R, Durán-Prado M, Illescas S, Chicano-Galvez E, Gómez-Romero FJ, Martinez-Alarcón J, Arias-Pardilla J, Lopez-Juarez P, Padin JF, Peinado JR, Serrano-Oviedo L. Longitudinal Assessment of Nasopharyngeal Biomarkers Post-COVID-19: Unveiling Persistent Markers and Severity Correlations. J Proteome Res 2024; 23:5064-5084. [PMID: 39392878 PMCID: PMC11536464 DOI: 10.1021/acs.jproteome.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
SARS-CoV-19 infection provokes a variety of symptoms; most patients present mild/moderate symptoms, whereas a small proportion of patients progress to severe illness with multiorgan failure accompanied by metabolic disturbances requiring ICU-level care. Given the importance of the disease, researchers focused on identifying severity-associated biomarkers in infected patients as well as markers associated with patients suffering long-COVID. However, little is known about the presence of biomarkers that remain a few years after SARS-CoV-2 infection once the patients fully recover of the symptoms. In this study, we evaluated the presence of persistent biomarkers in the nasopharyngeal tract two years after SARS-Cov-2 infection in fully asymptomatic patients, taking into account the severity of their infection (mild/moderate and severe infections). In addition to the direct identification of several components of the Coronavirus Infection Pathway in those individuals that suffered severe infections, we describe herein 371 proteins and their associated canonical pathways that define the different adverse effects of SARS-CoV-2 infections. The persistence of these biomarkers for up to two years after infection, along with their ability to distinguish the severity of the infection endured, highlights the surprising presence of persistent nasopharyngeal exudate changes in fully recovered patients.
Collapse
Affiliation(s)
- Francisco
Javier Redondo-Calvo
- Department
of Anesthesiology and Critical Care Medicine, University General Hospital, SESCAM, Ciudad Real 13004, Spain
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
| | - Yoana Rabanal-Ruiz
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Gema Verdugo-Moreno
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Natalia Bejarano-Ramírez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
- Department
of Pediatrics, University General Hospital, Ciudad Real 13004, Spain
| | - Raquel Bodoque-Villar
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Mario Durán-Prado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Soledad Illescas
- Department
of Microbiology, University General Hospital, Ciudad Real 13004, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC
Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical
Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba 14004, Spain
| | - Francisco Javier Gómez-Romero
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | | | - Javier Arias-Pardilla
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Pilar Lopez-Juarez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Juan Fernando Padin
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Juan Ramón Peinado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Leticia Serrano-Oviedo
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| |
Collapse
|
4
|
Maceratessi S, Sampaio NG. hnRNPs in antiviral innate immunity. Immunology 2024; 173:425-441. [PMID: 39111743 DOI: 10.1111/imm.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Collapse
Affiliation(s)
- Sofia Maceratessi
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| | - Natalia G Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Shao R, Visser I, Fros JJ, Yin X. Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections. Int J Biol Sci 2024; 20:4585-4600. [PMID: 39309436 PMCID: PMC11414379 DOI: 10.7150/ijbs.98029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.
Collapse
Affiliation(s)
- Ran Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Ibragimov E, Pedersen AØ, Sloth NM, Fredholm M, Karlskov-Mortensen P. Identification of a novel QTL for lean meat percentage using imputed genotypes. Anim Genet 2024; 55:658-663. [PMID: 38752377 DOI: 10.1111/age.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024]
Abstract
Lean meat percentage is a critical production trait in pig breeding systems with direct implications for the sustainability of the industry. In this study, we conducted a genome-wide association study for lean meat percentage using a cohort of 850 Duroc × (Landrace × Yorkshire) crossbred pigs and we identified QTL on SSC3 and SSC18. Based on the predicted effect of imputed variants and using the PigGTEx database of molecular QTL, we prioritized candidate genes and SNPs located within the QTL regions, which may be involved in the regulation of porcine leanness. Our results indicate that a nonsense mutation in ZC3HAV1L on SSC18 has a direct effect on lean meat percentage.
Collapse
Affiliation(s)
- Emil Ibragimov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anni Øyan Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Huang S, Girdner J, Nguyen LP, Sandoval C, Fregoso OI, Enard D, Li MMH. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a more potent restriction factor against alphaviruses. PLoS Pathog 2024; 20:e1011836. [PMID: 39207950 PMCID: PMC11361444 DOI: 10.1371/journal.ppat.1011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Host-virus conflicts have led to the rapid adaptation of host and viral proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP orthologs identified three positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified seven positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant is adjacent to the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a more potent ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - LeAnn P. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Carina Sandoval
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Melody M. H. Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Vanderroost J, Parpaite T, Avalosse N, Henriet P, Pierreux CE, Lorent JH, Gailly P, Tyteca D. Piezo1 Is Required for Myoblast Migration and Involves Polarized Clustering in Association with Cholesterol and GM1 Ganglioside. Cells 2023; 12:2784. [PMID: 38132106 PMCID: PMC10741634 DOI: 10.3390/cells12242784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside-enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1 associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.
Collapse
Affiliation(s)
- Juliette Vanderroost
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Thibaud Parpaite
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Noémie Avalosse
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Patrick Henriet
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | | | - Joseph H. Lorent
- Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Gailly
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Donatienne Tyteca
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| |
Collapse
|
9
|
Huang S, Girdner J, Nguyen LP, Enard D, Li MM. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a super restriction factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567784. [PMID: 38045310 PMCID: PMC10690157 DOI: 10.1101/2023.11.20.567784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Virus-host conflicts have led to the rapid adaptation of viral and host proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP identified 3 positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified 7 positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant inhabits the space surrounding the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a super restrictor ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - LeAnn P Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Li L, Zheng J, Oltean S. Regulation of Epithelial-Mesenchymal Transitions by Alternative Splicing: Potential New Area for Cancer Therapeutics. Genes (Basel) 2023; 14:2001. [PMID: 38002944 PMCID: PMC10671305 DOI: 10.3390/genes14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complicated biological process in which cells with epithelial phenotype are transformed into mesenchymal cells with loss of cell polarity and cell-cell adhesion and gain of the ability to migrate. EMT and the reverse mesenchymal-epithelial transitions (METs) are present during cancer progression and metastasis. Using the dynamic switch between EMT and MET, tumour cells can migrate to neighbouring organs or metastasize in the distance and develop resistance to traditional chemotherapy and targeted drug treatments. Growing evidence shows that reversing or inhibiting EMT may be an advantageous approach for suppressing the migration of tumour cells or distant metastasis. Among different levels of modulation of EMT, alternative splicing (AS) plays an important role. An in-depth understanding of the role of AS and EMT in cancer is not only helpful to better understand the occurrence and regulation of EMT in cancer progression, but also may provide new therapeutic strategies. This review will present and discuss various splice variants and splicing factors that have been shown to play a crucial role in EMT.
Collapse
Affiliation(s)
| | | | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter EX1 2LU, UK; (L.L.)
| |
Collapse
|
11
|
Sharp CP, Thompson BH, Nash TJ, Diebold O, Pinto RM, Thorley L, Lin YT, Sives S, Wise H, Clohisey Hendry S, Grey F, Vervelde L, Simmonds P, Digard P, Gaunt ER. CpG dinucleotide enrichment in the influenza A virus genome as a live attenuated vaccine development strategy. PLoS Pathog 2023; 19:e1011357. [PMID: 37146066 PMCID: PMC10191365 DOI: 10.1371/journal.ppat.1011357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.
Collapse
Affiliation(s)
- Colin P. Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Beth H. Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Tessa J. Nash
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Ola Diebold
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rute M. Pinto
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luke Thorley
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Yao-Tang Lin
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Samantha Sives
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Helen Wise
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Sara Clohisey Hendry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Finn Grey
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Paul Digard
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Eleanor R. Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
12
|
Nguyen LP, Aldana KS, Yang E, Yao Z, Li MMH. Alphavirus Evasion of Zinc Finger Antiviral Protein (ZAP) Correlates with CpG Suppression in a Specific Viral nsP2 Gene Sequence. Viruses 2023; 15:830. [PMID: 37112813 PMCID: PMC10145277 DOI: 10.3390/v15040830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Certain re-emerging alphaviruses, such as chikungunya virus (CHIKV), cause serious disease and widespread epidemics. To develop virus-specific therapies, it is critical to understand the determinants of alphavirus pathogenesis and virulence. One major determinant is viral evasion of the host interferon response, which upregulates antiviral effectors, including zinc finger antiviral protein (ZAP). Here, we demonstrated that Old World alphaviruses show differential sensitivity to endogenous ZAP in 293T cells: Ross River virus (RRV) and Sindbis virus (SINV) are more sensitive to ZAP than o'nyong'nyong virus (ONNV) and CHIKV. We hypothesized that the more ZAP-resistant alphaviruses evade ZAP binding to their RNA. However, we did not find a correlation between ZAP sensitivity and binding to alphavirus genomic RNA. Using a chimeric virus, we found the ZAP sensitivity determinant lies mainly within the alphavirus non-structural protein (nsP) gene region. Surprisingly, we also did not find a correlation between alphavirus ZAP sensitivity and binding to nsP RNA, suggesting ZAP targeting of specific regions in the nsP RNA. Since ZAP can preferentially bind CpG dinucleotides in viral RNA, we identified three 500-bp sequences in the nsP region where CpG content correlates with ZAP sensitivity. Interestingly, ZAP binding to one of these sequences in the nsP2 gene correlated to sensitivity, and we confirmed that this binding is CpG-dependent. Our results demonstrate a potential strategy of alphavirus virulence by localized CpG suppression to evade ZAP recognition.
Collapse
Affiliation(s)
- LeAnn P. Nguyen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelly S. Aldana
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|