1
|
Scintilla S, Rossetto D, Clémancey M, Rendon J, Ranieri A, Guella G, Assfalg M, Borsari M, Gambarelli S, Blondin G, Mansy SS. Prebiotic synthesis of the major classes of iron-sulfur clusters. Chem Sci 2025; 16:4614-4624. [PMID: 39944125 PMCID: PMC11812447 DOI: 10.1039/d5sc00524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Conditions that led to the synthesis of iron-sulfur clusters coordinated to tripeptides with a single thiolate ligand were investigated by UV-vis, NMR, EPR, and Mössbauer spectroscopies and by electrochemistry. Increasing concentrations of hydrosulfide correlated with the formation of higher nuclearity iron-sulfur clusters from mononuclear to [2Fe-2S] to [4Fe-4S] and finally to a putative, nitrogenase-like [6Fe-9S] complex. Increased nuclearity was also associated with decreased dynamics and increased stability. The synthesis of higher nuclearity iron-sulfur clusters is compatible with shallow, alkaline bodies of water on the surface of the early Earth, although other niche environments are possible. Because of the plasticity of such complexes, the type of iron-sulfur cluster formed on the prebiotic Earth would have been greatly influenced by the chemical environment and the thiolate containing scaffold. The discovery that all the major classes of iron-sulfur clusters easily form under prebiotically reasonable conditions broadens the chemistry accessible to protometabolic systems.
Collapse
Affiliation(s)
- Simone Scintilla
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Hudson River, Department of Biochemistry Nieuwe Kanaal 7V Wageningen PA 6709 Netherlands
| | - Daniele Rossetto
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
| | - Martin Clémancey
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Julia Rendon
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
- University of Grenoble Alpes, CNRS, CEA, INAC-SyMMES Grenoble 38000 France
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Graziano Guella
- Department of Physics, University of Trento Via Sommarive 14 Povo TN 38123 Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Serge Gambarelli
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Sheref S Mansy
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton AB T6G 2G2 Canada
| |
Collapse
|
2
|
Warmack RA, Rees DC. The nitrogenase mechanism: new roles for the dangler? J Biol Inorg Chem 2025; 30:125-133. [PMID: 39699648 PMCID: PMC11928389 DOI: 10.1007/s00775-024-02085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II. In this perspective, we consider whether analogous dangler sites could participate in the mechanism of dinitrogen reduction by nitrogenase. Two possible roles for dynamic danglers in the active site FeMo cofactor are highlighted that might occur transiently during turnover. The first role for a dangler involves the S2B belt sulfur associated with displacement by carbon monoxide and other ligands, while the second dangler role could involve the entire cluster upon displacement of the His- α 442 side chain to the molybdenum by a free carboxyl group of the homocitrate ligand. To assess whether waters might be able to interact with the cofactor, a survey of small ligands (water and alkali metal ions) contacting [4Fe4S] clusters in synthetic compounds and proteins was conducted. This survey reveals a preference for these sites to pack over the centers of 2Fe2S rhombs. Waters are excluded from the S2B site in the resting state of nitrogenase, suggesting it is unlikely that water molecules coordinate to the FeMo cofactor during catalysis. While alkali metal ions are found to generally influence the properties of catalysts for dinitrogen reduction, no convincing evidence was found that any of the waters near the FeMo cofactor could instead be sodium or potassium ions. Dangler sites, if they exist in the nitrogenase mechanism, are likely formed transiently by localized changes to the resting-state FeMo cofactor structure.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 164-30, Pasadena, CA, 91125, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, 147-75, Pasadena, CA, 91125, USA.
| |
Collapse
|
3
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
4
|
Barchenko M, Malcomson T, O’Malley PJ, de Visser SP. Biomimetic [MFe 3S 4] 3+ Cubanes (M = V/Mo) as Catalysts for a Fischer-Tropsch-like Hydrocarbon Synthesis─A Computational Study. Inorg Chem 2025; 64:479-494. [PMID: 39727298 PMCID: PMC11734119 DOI: 10.1021/acs.inorgchem.4c04995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide. In biomimetic chemistry, [MFe3S4] (M = Mo/V) cubanes have been synthesized, studied, and shown to be promising mimics of some of the geometric and electronic properties of the nitrogenase cofactors. In this work, a density functional theory (DFT) study is presented on Fischer-Tropsch catalysis by these cubane complexes by studying CO binding and reduction to hydrocarbons. Our work implies that molybdenum has stronger binding interactions with the iron-sulfur framework of the cubane, which results in easier reduction of substrates like N2H4. However, this inhibits the binding and activation of CO, and hence, the molybdenum-containing complexes are less suitable for Fischer-Tropsch catalysis than vanadium-containing complexes.
Collapse
Affiliation(s)
- Maxim Barchenko
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.
| | - Thomas Malcomson
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Patrick J. O’Malley
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2025; 54:616-630. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
6
|
Stennett CR, Queen JD, Ruhlandt K, Peng Y, Wagner CL. Philip P. Power: Celebrating a Career in Exploratory Synthesis. Inorg Chem 2024; 63:24445-24452. [PMID: 39813135 DOI: 10.1021/acs.inorgchem.4c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
7
|
Yan Q, An S, Yu L, Li S, Wu X, Dong S, Xiong S, Wang H, Wang S, Du J. A Ni 4O 4-cubane-squarate coordination framework for molecular recognition. Nat Commun 2024; 15:9911. [PMID: 39548080 PMCID: PMC11568191 DOI: 10.1038/s41467-024-54348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Molecular recognition is a fundamental function of natural systems that ensures biological activity. This is achieved through the sieving effect, host-guest interactions, or both in biological environments. Recent advancements in multifunctional proteins reveal a new dimension of functional organization that goes beyond single-function molecular recognition, emphasizing the need for artificial multifunctional materials in industrial applications. Herein, we have designed a porous Ni4O4-cubane squarate coordination polymer as an artificial molecular recognition host, drawing inspiration from the structural and functional features of natural enzymes. A comprehensive assessment of the material's ability to distinguish target species under different operating conditions was carried out. The results confirm its sieving function through hexane isomers separation, host-guest interaction function via xenon/krypton separation, and dual presence of sieving and interaction through carbon dioxide/nitrogen separation. Additionally, the material demonstrates good stability and feasibility for large-scale production, indicating its practical potential. Our findings provide a bio-inspired multifunctional recognition material for chemical separations as proof-of-concept while offering solutions to advance artificial multifunctional materials adaptable to other applications beyond chemical separations.
Collapse
Affiliation(s)
- Qingqing Yan
- CAS Key Laboratory of Microscale Magnetic Resonance, Suzhou Institute for Advanced Research, Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Shuyi An
- CAS Key Laboratory of Microscale Magnetic Resonance, Suzhou Institute for Advanced Research, Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, China
| | - Shenfang Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, China
| | - Xiaonan Wu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, Sichuan, China
| | - Siqi Dong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, Sichuan, China
| | - Shunshun Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, Sichuan, China.
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, China.
| | - Sujing Wang
- CAS Key Laboratory of Microscale Magnetic Resonance, Suzhou Institute for Advanced Research, Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance, Suzhou Institute for Advanced Research, Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Fataftah M, Wilson DWN, Mathe Z, Gerard TJ, Mercado BQ, DeBeer S, Holland PL. Inserting Three-Coordinate Nickel into [4Fe-4S] Clusters. ACS CENTRAL SCIENCE 2024; 10:1910-1919. [PMID: 39463842 PMCID: PMC11503493 DOI: 10.1021/acscentsci.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Metalloenzymes can efficiently achieve the multielectron interconversion of carbon dioxide and carbon monoxide under mild conditions. Anaerobic carbon monoxide dehydrogenase (CODH) performs these reactions at the C cluster, a unique nickel-iron-sulfide cluster that features an apparent three-coordinate nickel site. How nature assembles the [NiFe3S4]-Feu cluster is not well understood. We use synthetic clusters to demonstrate that electron transfer can drive insertion of a Ni0 precursor into an [Fe4S4]3+ cluster to assemble higher nuclearity nickel-iron-sulfide clusters with the same complement of metal ions as the C cluster. Initial electron transfer results in a [1Ni-4Fe-4S] cluster in which a Ni1+ ion sits outside of the cluster. Modifying the Ni0 precursor results in the insertion of two nickel atoms into the cluster, concomitant with ejection of an iron to yield an unprecedented [2Ni-3Fe-4S] cluster possessing four three-coordinate metal sites. Both clusters are characterized using magnetometry, electron paramagnetic resonance (EPR), Mössbauer, and X-ray absorption spectroscopy and supported by DFT computations that are consistent with both clusters having nickel in the +1 oxidation state. These results demonstrate that Ni1+ is a viable oxidation state within iron-sulfur clusters and that redox-driven transformations can give rise to higher nuclearity clusters of relevance to the CODH C cluster.
Collapse
Affiliation(s)
- Majed
S. Fataftah
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary Mathe
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Theodore J. Gerard
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Patrick L. Holland
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Subasinghe SMS, Mankad NP. Quantifying effects of second-sphere cationic groups on redox properties of dimolybdenum quadruple bonds. Chem Commun (Camb) 2024; 60:9966-9969. [PMID: 39189060 DOI: 10.1039/d4cc02759k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A series of four dimolybdenum paddlewheel complexes supported by anionic N,N-dimethylglycinate (DMG) or zwitterionic N,N,N-trimethylglycine (TMG) ligands was synthesised to examine the effects of charged groups in the second coordination sphere on redox properties of MoMo bonds. An average shift in reduction potential of +35 mV per cationically charged group was measured, which is approximately half of what would be expected for an analogous mononuclear complex.
Collapse
Affiliation(s)
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
10
|
Trenerry MJ, Bailey GA. Ditopic ligand effects on solution structure and redox chemistry in discrete [Cu 12S 6] clusters with labile Cu-S bonds. NANOSCALE 2024; 16:16048-16057. [PMID: 39078277 DOI: 10.1039/d4nr02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Copper chalcogenide nanoclusters (Cu-S/Se/Te NCs) are a broad and diverse class of atomically precise nanomaterials that have historically been studied for potential applications in luminescent devices and sensors, and for their beautiful, mineral-like crystal structures. By the "cluster-surface" analogy, Cu-S/Se NCs are prime candidates for the development of nanoscale multimetallic catalysts with atomic precision. However, the majority of studies conducted to date have focused exclusively on their solid-state structures and physical properties, leaving open questions as to their solution stability, dynamics, and reactivity. Herein, we report the first detailed interrogation of solution structure, dynamics, electrochemistry, and decomposition of Cu-S NCs. Specifically, we report the detailed NMR spectroscopy, diffusion-ordered spectroscopy, MALDI mass spectrometry, electrochemical and stoichiometric redox reactivity studies, and DFT studies of a series of [Cu12S6] clusters with labile Cu-S bonds supported by monodentate phosphines and ditopic bis(diphenylphosphino)alkane ligands PPh2R (R = Et, -(CH2)5-, -(CH2)8-). We find that the ligand binding topology dictates the extent of speciation in solution, with complete stability being afforded by the longer octane chelate in dppo (1,8-bis(diphenylphosphino)octane) according to 1H and DOSY NMR and MALDI-MS studies. Furthermore, a combined electrochemical and computational investigation of [Cu12S6(dppo)4] reveals that the intact [Cu12S6] core undergoes a quasireversible one-electron oxidation at mild applied potentials ([Cu12S6]0/+: -0.50 V vs. Fc0/+). In contrast, prolonged air exposure or treatment with chemical oxidants results in cluster degradation with S atom extrusion as phosphine sulfide byproducts. This work adds critical new dimensions to the stabilization and study of atomically precise metal chalcogenide NCs with labile M-S/Se bonds, and demonstrates both progress and challenges in controlling the solution behaviour and redox chemistry of phosphine-supported copper chalcogenide nanoclusters.
Collapse
|
11
|
Wilson DWN, Thompson BC, Collauto A, Hooper RX, Knapp CE, Roessler MM, Musgrave RA. Mixed Valence {Ni 2+Ni 1+} Clusters as Models of Acetyl Coenzyme A Synthase Intermediates. J Am Chem Soc 2024; 146:21034-21043. [PMID: 39023163 PMCID: PMC11295191 DOI: 10.1021/jacs.4c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Acetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [Fe4S4]n+ cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle. In this work, we isolate the first bimetallic models of two hypothesized intermediates on the paramagnetic pathway of the ACS function. The heteroligated {Ni2+Ni1+} cluster, [K(12-crown-4)2][1], effectively replicates the coordination number and oxidation state of the proposed "Ared" state of the A-cluster. Addition of carbon monoxide to [1]- allows for isolation of a dinuclear {Ni2+Ni1+(CO)} complex, [K(12-crown-2)n][2] (n = 1-2), which bears similarity to the "ANiFeC" enzyme intermediate. Structural and electronic properties of each cluster are elucidated by X-ray diffraction, nuclear magnetic resonance, cyclic voltammetry, and UV/vis and electron paramagnetic resonance spectroscopies, which are supplemented by density functional theory (DFT) calculations. Calculations indicate that the pseudo-T-shaped geometry of the three-coordinate nickel in [1]- is more stable than the Y-conformation by 22 kcal mol-1, and that binding of CO to Ni1+ is barrierless and exergonic by 6 kcal mol-1. UV/vis absorption spectroscopy on [2]- in conjunction with time-dependent DFT calculations indicates that the square-planar nickel site is involved in electron transfer to the CO π*-orbital. Further, we demonstrate that [2]- promotes thioester synthesis in a reaction analogous to the production of acetyl coenzyme A by ACS.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Benedict C. Thompson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| | - Alberto Collauto
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Reagan X. Hooper
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Caroline E. Knapp
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Maxie M. Roessler
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Rebecca A. Musgrave
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
12
|
Jiang N, Darù A, Kunstelj Š, Vitillo JG, Czaikowski ME, Filatov AS, Wuttig A, Gagliardi L, Anderson JS. Catalytic, Spectroscopic, and Theoretical Studies of Fe 4S 4-Based Coordination Polymers as Heterogenous Coupled Proton-Electron Transfer Mediators for Electrocatalysis. J Am Chem Soc 2024; 146:12243-12252. [PMID: 38651361 DOI: 10.1021/jacs.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.
Collapse
Affiliation(s)
- Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Špela Kunstelj
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Como 22100, Italy
| | - Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
- Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago,Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| |
Collapse
|
13
|
Grunwald L, Abbott DF, Mougel V. Gauging Iron-Sulfur Cubane Reactivity from Covalency: Trends with Oxidation State. JACS AU 2024; 4:1315-1322. [PMID: 38665672 PMCID: PMC11040707 DOI: 10.1021/jacsau.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
We investigated room-temperature metal and ligand K-edge X-ray absorption (XAS) spectra of a complete redox series of cubane-type iron-sulfur clusters. The Fe K-edge position provides a qualitative but convenient alternative to the traditional spectroscopic descriptors used to identify oxidation states in these systems, which we demonstrate by providing a calibration curve based on two analytic methods. Furthermore, high energy resolution fluorescence detected XAS (HERFD-XAS) at the S K-edge was used to measure Fe-S bond covalencies and record their variation with the average valence of the Fe atoms. While the Fe-S(thiolate) covalency evolves linearly, gaining 11 ± 0.4% per bond and hole, the Fe-S(μ3) covalency evolves asystematically, reflecting changes in the magnetic exchange mechanism. A strong discontinuity manifested for superoxidation to the all-ferric state, distinguishing its electronic structure and its potential (bio)chemical role from those of its redox congeners. We highlight the functional implications of these trends for the reactivity of iron-sulfur cubanes.
Collapse
Affiliation(s)
- Liam Grunwald
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Daniel F. Abbott
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Victor Mougel
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Warmack RA, Rees DC. Nitrogenase beyond the Resting State: A Structural Perspective. Molecules 2023; 28:7952. [PMID: 38138444 PMCID: PMC10745740 DOI: 10.3390/molecules28247952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogenases have the remarkable ability to catalyze the reduction of dinitrogen to ammonia under physiological conditions. How does this happen? The current view of the nitrogenase mechanism focuses on the role of hydrides, the binding of dinitrogen in a reductive elimination process coupled to loss of dihydrogen, and the binding of substrates to a binuclear site on the active site cofactor. This review focuses on recent experimental characterizations of turnover relevant forms of the enzyme determined by cryo-electron microscopy and other approaches, and comparison of these forms to the resting state enzyme and the broader family of iron sulfur clusters. Emerging themes include the following: (i) The obligatory coupling of protein and electron transfers does not occur in synthetic and small-molecule iron-sulfur clusters. The coupling of these processes in nitrogenase suggests that they may involve unique features of the cofactor, such as hydride formation on the trigonal prismatic arrangement of irons, protonation of belt sulfurs, and/or protonation of the interstitial carbon. (ii) Both the active site cofactor and protein are dynamic under turnover conditions; the changes are such that more highly reduced forms may differ in key ways from the resting-state structure. Homocitrate appears to play a key role in coupling cofactor and protein dynamics. (iii) Structural asymmetries are observed in nitrogenase under turnover-relevant conditions by cryo-electron microscopy, although the mechanistic relevance of these states (such as half-of-sites reactivity) remains to be established.
Collapse
Affiliation(s)
- Rebeccah A. Warmack
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Ravel-Massol R, Munshi S, Pujol A, Garcia-Serres R, Saffon-Merceron N, Mézailles N, Fustier-Boutignon M. One Ligand to Bind them All: S~C~S 2- Carbon- and Sulfur-Based Gem-Dianion as Structuring Ligand for Iron Polymetallic Assemblies. Chemistry 2023; 29:e202302130. [PMID: 37681691 DOI: 10.1002/chem.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 09/09/2023]
Abstract
Numerous synthetic models of the FeMo-co cluster of nitrogenases have been proposed to find the simplest structure with relevant reactivity. Indeed, such structures are able to perform multi-electrons reduction processes, such as the conversion of N2 to ammonia, and of CO2 into methane and alkenes. The most challenging parameter to imitate is indeed the central carbide ligand, which is believed to maintain the integrity of iron sulfide assembly during the course of catalytic cycles. The study proposes the use of bis(diphenylthiophosphinoyl)methanediide (SCS)2- as an ideal platform for the synthesis of bi- and tetra-metallic iron complexes, in which the iron-carbon interaction is maintained upon structural diversification and redox state changes.
Collapse
Affiliation(s)
- Raphaël Ravel-Massol
- Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR CNRS 5069, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Sandip Munshi
- Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR CNRS 5069, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Anthony Pujol
- Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR CNRS 5069, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Ricardo Garcia-Serres
- Université Grenoble Alpes, CNRS, CEA, IRIG Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000, Grenoble, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR CNRS 5069, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marie Fustier-Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR CNRS 5069, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
16
|
Alayoglu P, Chang T, Lorenzo Ocampo MV, Murray LJ, Chen YS, Mankad NP. Metal Site-Specific Electrostatic Field Effects on a Tricopper(I) Cluster Probed by Resonant Diffraction Anomalous Fine Structure (DAFS). Inorg Chem 2023; 62:15267-15276. [PMID: 37651726 DOI: 10.1021/acs.inorgchem.3c02472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Studies of multinuclear metal complexes are greatly enhanced by resonant diffraction measurements, which probe X-ray absorption profiles of crystallographically independent metal sites within a cluster. In particular, X-ray diffraction anomalous fine structure (DAFS) analysis provides data that can be interpreted akin to site-specific XANES, allowing for differences in metal K-edge resonances to be deconvoluted even for different metal sites within a homometallic system. Despite the prevalence of Cu-containing clusters in biology and energy science, DAFS has yet to be used to analyze multicopper complexes of any type until now. Here, we report an evaluation of trends using a series of strategically chosen Cu(I) and Cu(II) complexes to determine how energy dependencies of anomalous scattering factors are impacted by coordination geometry, ligand shell, cluster nuclearity, and oxidation state. This calibration data is used to analyze a formally tricopper(I) complex that was found by DAFS to be site-differentiated due to the unsymmetrical influence on different Cu sites of the electrostatic field from a proximal K+ cation.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Tieyan Chang
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - M Victoria Lorenzo Ocampo
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611 United States
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611 United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
17
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|