1
|
Chen T, Xu Y, Yang F, Pan Y, Ji N, Li J, Zeng X, Chen Q, Jiang L, Shen YQ. Crosstalk of glutamine metabolism between cancer-associated fibroblasts and cancer cells. Cell Signal 2025; 133:111874. [PMID: 40381975 DOI: 10.1016/j.cellsig.2025.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Glutamine (Gln), a critical metabolic substrate, fuels the uncontrolled proliferation of cancer cells. Cancer-associated fibroblasts (CAFs), essential components of the tumor microenvironment, facilitate tumor progression by supplying Gln to cancer cells and driving drug resistance through metabolic reprogramming. This review highlights the key processes of Gln uptake, transport, and catabolism and explores the metabolic crosstalk between CAFs and cancer cells. It also examines the roles of major oncogenic regulators-c-Myc, mTORC, KRAS, p53, and HIF-in controlling Gln metabolism and shaping therapeutic resistance. Current pharmacological approaches targeting Gln metabolism, including enzyme inhibitors and transporter blockers, are discussed alongside emerging therapeutic strategies and ongoing clinical trials. Lastly, we underscore the importance of integrating advanced technologies like artificial intelligence and spatial omics to refine treatment targeting and develop more effective, personalized therapeutic interventions.
Collapse
Affiliation(s)
- Tingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiming Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxin Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Zhang S, Cheng Z, Zhang T, Ding Y, Zhu H, Wang L, Sun H. Liquid crystal monomers induce placental development and progesterone release dysregulation through transplacental transportation. Nat Commun 2025; 16:1204. [PMID: 39885209 PMCID: PMC11782568 DOI: 10.1038/s41467-025-56552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Embryonic and fetal development can be affected during gestation by exposure to xenobiotics that cross the placenta. Liquid crystal monomers (LCMs) are emerging contaminants commonly found in indoor environments; however, whether they can cross the placenta and affect placental development remains unexplored. Here, we develop an evaluation system that integrates human biomonitoring, uterine perfusion in pregnant rats, and placental cells. We find fourteen out of the fifty-six LCMs that are detected in maternal and cord serum samples from ninety-three healthy pregnant women, at median levels of 13.9 and 18.1 ng/mL, respectively. Subsequent explorations of in utero exposure in rats indicate that aromatic amino acid transporter 1 (SLC16A10) mediates transplacental transportation of the LCMs. Placental cells exposed to LCMs exhibit delayed placental development and reduced progesterone release. These findings show that SLC16A10-mediated transplacental transportation of LCMs inhibits placental development and progesterone release, highlighting the importance of gestational exposure to emerging contaminants.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou, 510275, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Hua Y, Hua WJ, Feng CC, Zhu QW. N 6-methyladenosine modification of SLC38A7 promotes cell migration, invasion, oxidative phosphorylation, and mitochondrial function in gastric cancer. J Biol Chem 2024; 300:107843. [PMID: 39357829 PMCID: PMC11555334 DOI: 10.1016/j.jbc.2024.107843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Solute carrier (SLC) 38 family, responsible for trans-membrane transport of neutral amino acids, plays a role in the proliferation, invasion, and metastasis of cancer cells, but its role in gastric cancer (GC) progression remains unclear. This study aimed to explore the biological effects of SLC38A7 and its regulatory mechanisms in GC. RNA expression data, tumor tissue specimens, and GC cell lines were used for bioinformatics and experimental analyses. Cell Counting Kit-8 assay, wound healing assay, and Transwell invasion assay were used to evaluate cell viability, migration, and invasion, respectively. Oxidative phosphorylation, mitochondrial membrane potential, and expression of the critical proteins in the mitochondrial respiratory chain were assayed using extracellular flux analysis, flow cytometry, and Western blot, respectively. RNA immunoprecipitation assay was used to explore the mechanisms of N6-methyladenosine (m6A) methylation. SLC38A7 was upregulated in GC tissue and cell lines. SLC38A7 silencing suppressed cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in cancer cells. SLC38A7 overexpression had the opposite biological effects. Interactions between SLC38A7 and methyltransferase like 3 (METTL3) or insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were detected. SLC38A7 mRNA stability was maintained by METTL3-IGF2BP2 axis in an m6A-dependent manner. Our results suggest that SLC38A7, stabilized by METTL3 and IGF2BP2-mediated m6A methylation, enhances cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in GC, highlighting its role as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yi Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei-Jun Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Cun-Cheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qiu-Wei Zhu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
4
|
CHU FEI, TONG KAI, GU XIANG, BAO MEI, CHEN YANFEN, WANG BIN, SHAO YANHUA, WEI LING. Glutamine transporters as effective targets in digestive system malignant tumor treatment. Oncol Res 2024; 32:1661-1671. [PMID: 39308523 PMCID: PMC11413814 DOI: 10.32604/or.2024.048287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body. Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements, which is supported by the upregulation of glutamine transporters. Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors. Among all cancers, digestive system malignant tumors (DSMTs) have the highest incidence and mortality rates, and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy. Due to the relatively low survival rate and severe side effects associated with DSMTs treatment, new treatment strategies are urgently required. This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs. Additionally, glutamine transporter-target drugs are discussed, providing theoretical guidance for the further development of drugs DSMTs treatment.
Collapse
Affiliation(s)
- FEI CHU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - KAI TONG
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - XIANG GU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - MEI BAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - YANFEN CHEN
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - BIN WANG
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - YANHUA SHAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - LING WEI
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Wang X, Gong W, Xiong X, Jia X, Xu J. Asparagine: A key metabolic junction in targeted tumor therapy. Pharmacol Res 2024; 206:107292. [PMID: 39002867 DOI: 10.1016/j.phrs.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Weijian Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xueyou Xiong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| |
Collapse
|
7
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
8
|
Fu S, Xu S, Zhang S. The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188893. [PMID: 37015314 DOI: 10.1016/j.bbcan.2023.188893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Shenao Fu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shaokang Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
9
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
10
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
11
|
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023; 56:14-31. [PMID: 36630912 PMCID: PMC9839308 DOI: 10.1016/j.immuni.2022.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
12
|
Huang Z, Chen CW, Buj R, Tangudu NK, Fang RS, Leon KE, Dahl ES, Varner EL, von Krusenstiern E, Cole AR, Snyder NW, Aird KM. ATM inhibition drives metabolic adaptation via induction of macropinocytosis. J Cell Biol 2023; 222:e202007026. [PMID: 36399181 PMCID: PMC9679964 DOI: 10.1083/jcb.202007026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/30/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Supplementation of ATM-inhibited cells with amino acids, branched-chain amino acids (BCAAs) in particular, abrogated macropinocytosis. Analysis of ATM-inhibited cells in vitro demonstrated increased BCAA uptake, and metabolomics of ascites and interstitial fluid from tumors indicated decreased BCAAs in the microenvironment of ATM-inhibited tumors. These data reveal a novel basis of ATM-mediated tumor suppression whereby loss of ATM stimulates protumorigenic uptake of nutrients in part via macropinocytosis to promote cancer cell survival and reveal a potential metabolic vulnerability of ATM-inhibited cells.
Collapse
Affiliation(s)
- Zhentai Huang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chi-Wei Chen
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Richard S. Fang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kelly E. Leon
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA
| | - Erika S. Dahl
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA
| | - Erika L. Varner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Eliana von Krusenstiern
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|