1
|
Shrestha A, Pillis DM, Felker S, Chi M, Wagner K, Gbotosho OT, Sieling J, Shadid M, Malik P. Preclinical efficacy of a modified gamma-globin lentivirus gene therapy in Berkeley sickle cell anemia mice and human xenograft models. Mol Ther Methods Clin Dev 2025; 33:101439. [PMID: 40176947 PMCID: PMC11964741 DOI: 10.1016/j.omtm.2025.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
We previously showed correction of sickle cell anemia (SCA) in mice utilizing a lentiviral vector (LV) expressing human γ-globin. Herein, we made a G16D mutation in the γ-globin gene to generate the G16D mutation (GbGM) LV to increase fetal hemoglobin formation. We also generated an insulated version of this LV, GbGMI, inserting a 36-bp insulator from the Foamy virus in the long terminal repeats of the LV. Preclinical batches of GbGM and GbGMI LV showed both were highly efficacious in correcting SCA in mice, with sustained gene transfer in primary transplanted SCA mice and high hematopoietic stem cell (HSC) transduction in colony-forming unit-spleen in secondary transplanted mice. CRISPR-mediated targeting of the proviruses into the LMO2 proto-oncogene showed remarkably reduced LMO2 activation by both insulated and uninsulated LV, compared to the SFFV γ-RV vector targeted to the same locus. We therefore used the GbGM LV to perform preclinical human CD34+ gene transfer. We assessed gene transfer and engraftment of human HSCs in two immunocompromised mouse models: persistent stable GbGM-transduced cell engraftment was comparable to that of untransduced cells with no detrimental effects on hematopoiesis up to 20 weeks post transplant. These robust preclinical studies in mouse and human HSCs allowed its translation into a clinical trial.
Collapse
Affiliation(s)
- Archana Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Aruvant Sciences, New York, NY 10036, USA
| | - Devin M. Pillis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Sydney Felker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Kimberly Wagner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Oluwabukola T. Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | | | | | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Hardouin G, Miccio A, Brusson M. Gene therapy for β-thalassemia: current and future options. Trends Mol Med 2025; 31:344-358. [PMID: 39794177 DOI: 10.1016/j.molmed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients. Here, we review breakthroughs in gene addition- and genome-editing-based therapies for β-thalassemia, the clinical outcomes enabling approval by regulatory agencies, and perspectives for further development.
Collapse
Affiliation(s)
- Giulia Hardouin
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.
| | - Megane Brusson
- Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France
| |
Collapse
|
3
|
Phuphanitcharoenkun S, Bhukhai K, Phanthong P, Prasongtanakij S, Linn AK, Sutjarit N, Anurathapan U, Leboulch P, Payen E, Hongeng S, Borwornpinyo S. Droplet digital polymerase chain reaction-based quantitation of therapeutic lentiviral vector copies in transduced hematopoietic stem cells. Cytotherapy 2024; 26:586-591. [PMID: 38551525 DOI: 10.1016/j.jcyt.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AIMS Gene therapy using lentiviral vectors (LVs) that harbor a functional β-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS After HSPCs were transduced with an LV encoding the therapeutic β-globin (βA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of βA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.
Collapse
Affiliation(s)
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Prasongtanakij
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Philippe Leboulch
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Emmanuel Payen
- Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto - immune, Hematological and Bacterial Diseases, Fontenay aux Roses, France
| | - Suradej Hongeng
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Nai A, Cordero-Sanchez C, Tanzi E, Pagani A, Silvestri L, Di Modica SM. Cellular and animal models for the investigation of β-thalassemia. Blood Cells Mol Dis 2024; 104:102761. [PMID: 37271682 DOI: 10.1016/j.bcmd.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
β-Thalassemia is a genetic form of anemia due to mutations in the β-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of β-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.
Collapse
Affiliation(s)
- Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy.
| | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| |
Collapse
|
5
|
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases.
Collapse
|
6
|
Abbasalipour M, Khosravi MA, Zeinali S, Khanahmad H, Azadmanesh K, Karimipoor M. Lentiviral vector containing beta-globin gene for beta thalassemia gene therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Magrin E, Semeraro M, Hebert N, Joseph L, Magnani A, Chalumeau A, Gabrion A, Roudaut C, Marouene J, Lefrere F, Diana JS, Denis A, Neven B, Funck-Brentano I, Negre O, Renolleau S, Brousse V, Kiger L, Touzot F, Poirot C, Bourget P, El Nemer W, Blanche S, Tréluyer JM, Asmal M, Walls C, Beuzard Y, Schmidt M, Hacein-Bey-Abina S, Asnafi V, Guichard I, Poirée M, Monpoux F, Touraine P, Brouzes C, de Montalembert M, Payen E, Six E, Ribeil JA, Miccio A, Bartolucci P, Leboulch P, Cavazzana M. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial. Nat Med 2022; 28:81-88. [PMID: 35075288 DOI: 10.1038/s41591-021-01650-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/30/2021] [Indexed: 01/19/2023]
Abstract
Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34+ cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling βA-T87Q-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively. Inclusion and exclusion criteria were similar to those for allogeneic transplantation but restricted to patients lacking geno-identical, histocompatible donors. Four patients with TDT and three patients with SCD, ages 13-21 years, were treated after busulfan myeloablation 4.6-7.9 years ago, with a median follow-up of 4.5 years. Key primary endpoints included mortality, engraftment, replication-competent lentivirus and clonal dominance. No adverse events related to the drug product were observed. Clinical remission and remediation of biological hallmarks of the disease have been sustained in two of the three patients with SCD, and frequency of transfusions was reduced in the third. The patients with TDT are all transfusion free with improvement of dyserythropoiesis and iron overload.
Collapse
Affiliation(s)
- Elisa Magrin
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Michaela Semeraro
- Centre d'Investigation Clinique-Unité de Recherche Clinique, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Université de Paris, Paris, France
| | - Nicolas Hebert
- Univ Paris Est Creteil, INSERM, EFS, IMRB, Créteil, France.,Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Laure Joseph
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Alessandra Magnani
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Anne Chalumeau
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Aurélie Gabrion
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Cécile Roudaut
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Jouda Marouene
- Centre d'Investigation Clinique-Unité de Recherche Clinique, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Francois Lefrere
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Jean-Sebastien Diana
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Adeline Denis
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology and Hematology Department, Hôpital Necker Enfants-Malades, Paris, France
| | - Isabelle Funck-Brentano
- Pediatric Immunology and Hematology Department, Hôpital Necker Enfants-Malades, Paris, France
| | - Olivier Negre
- CEA, INSERM, Université Paris-Saclay, Division of Innovative Therapies, Institut François Jacob, Fontenay aux Roses, France.,Bluebird Bio, Inc., Cambridge, MA, USA
| | - Sylvain Renolleau
- Pediatric Intensive Care Unit, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Valentine Brousse
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Laurent Kiger
- Univ Paris Est Creteil, INSERM, EFS, IMRB, Créteil, France
| | - Fabien Touzot
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Catherine Poirot
- Department of Hematology, Fertility Preservation, Hôpital Saint Louis, Paris, France.,Sorbonne Université, Paris, France
| | - Philippe Bourget
- Pharmacy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Wassim El Nemer
- Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Stéphane Blanche
- Pediatric Immunology and Hematology Department, Hôpital Necker Enfants-Malades, Paris, France
| | - Jean-Marc Tréluyer
- Centre d'Investigation Clinique-Unité de Recherche Clinique, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Université de Paris, Paris, France
| | | | | | - Yves Beuzard
- Univ Paris Est Creteil, INSERM, EFS, IMRB, Créteil, France.,CEA, INSERM, Université Paris-Saclay, Division of Innovative Therapies, Institut François Jacob, Fontenay aux Roses, France
| | | | - Salima Hacein-Bey-Abina
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades, INSERM U1151, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Isabelle Guichard
- Service de Médecine Interne, Hôpital Nord, CHU de Saint-Étienne, Saint-Étienne, Paris, France
| | - Maryline Poirée
- Department of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Lenval, Nice, France
| | - Fabrice Monpoux
- Unité d'Hémato-Oncologie Infantile. Hôpital de l'Archet 2, Nice, France
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Assistance Publique-Hopitaux de Paris, La Pitié-Salpêtrière, and Sorbonne University, Pierre et Marie Curie School of Medicine, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-hematology, Hôpital Necker-Enfants Malades, Paris, France
| | - Mariane de Montalembert
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France
| | - Emmanuel Payen
- CEA, INSERM, Université Paris-Saclay, Division of Innovative Therapies, Institut François Jacob, Fontenay aux Roses, France
| | - Emmanuelle Six
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Centre d'Investigation Clinique-Biothérapie, Hôpital Universitaire Necker Enfants-Malades, GH Paris Centre, Paris, France.,Bluebird Bio, Inc., Cambridge, MA, USA
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Pablo Bartolucci
- Univ Paris Est Creteil, INSERM, EFS, IMRB, Créteil, France.,Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Philippe Leboulch
- CEA, INSERM, Université Paris-Saclay, Division of Innovative Therapies, Institut François Jacob, Fontenay aux Roses, France. .,Genetics Division, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Marina Cavazzana
- Université de Paris, Paris, France. .,IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France. .,Biotherapy Department and Clinical Investigation Center, Assistance Publique Hopitaux de Paris, INSERM, Paris, France.
| |
Collapse
|
8
|
Rattananon P, Anurathapan U, Bhukhai K, Hongeng S. The Future of Gene Therapy for Transfusion-Dependent Beta-Thalassemia: The Power of the Lentiviral Vector for Genetically Modified Hematopoietic Stem Cells. Front Pharmacol 2021; 12:730873. [PMID: 34658870 PMCID: PMC8517149 DOI: 10.3389/fphar.2021.730873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.
Collapse
Affiliation(s)
- Parin Rattananon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| |
Collapse
|
9
|
Nualkaew T, Sii-Felice K, Giorgi M, McColl B, Gouzil J, Glaser A, Voon HPJ, Tee HY, Grigoriadis G, Svasti S, Fucharoen S, Hongeng S, Leboulch P, Payen E, Vadolas J. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol Ther 2021; 29:2841-2853. [PMID: 33940155 PMCID: PMC8417505 DOI: 10.1016/j.ymthe.2021.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/30/2023] Open
Abstract
A primary challenge in lentiviral gene therapy of β-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVβ-shα2, that allows coordinated expression of the therapeutic βA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in β-thalassemia. We demonstrate that LVβ-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and βA-T87Q-globin gene expression identical to the parent vector. Compared with the first βA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVβ-shα2 shows 1.7-fold greater potency to improve α/β ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of β-thalassemia and provide an improved benefit/risk ratio regardless of the β-thalassemia genotype.
Collapse
Affiliation(s)
- Tiwaporn Nualkaew
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France
| | - Marie Giorgi
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Bradley McColl
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Julie Gouzil
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Astrid Glaser
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hsin Y Tee
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - George Grigoriadis
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Philippe Leboulch
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Genetics Division, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Emmanuel Payen
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France.
| | - Jim Vadolas
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
10
|
|
11
|
Yang H, Qing K, Keeler GD, Yin L, Mietzsch M, Ling C, Hoffman BE, Agbandje-McKenna M, Tan M, Wang W, Srivastava A. Enhanced Transduction of Human Hematopoietic Stem Cells by AAV6 Vectors: Implications in Gene Therapy and Genome Editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:451-458. [PMID: 32276210 PMCID: PMC7150427 DOI: 10.1016/j.omtn.2020.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
We have reported that of the 10 most commonly used adeno-associated virus (AAV) serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs) in vitro, as well as in vivo. More recently, polyvinyl alcohol (PVA), was reported to be a superior replacement for human serum albumin (HSA) for ex vivo expansion of HSCs. Since HSA has been shown to increase the transduction efficiency of AAV serotype vectors, we evaluated whether PVA could also enhance the transduction efficiency of AAV6 vectors in primary human HSCs. We report here that up to 12-fold enhancement in the transduction efficiency of AAV6 vectors can be achieved in primary human HSCs with PVA. We also demonstrate that the improvement in the transduction efficiency is due to PVA-mediated improved entry and intracellular trafficking of AAV6 vectors in human hematopoietic cells in vitro, as well as in murine hepatocytes in vivo. Taken together, our studies suggest that the use of PVA is an attractive strategy to further improve the efficacy of AAV6 vectors. This has important implications in the optimal use of these vectors in the potential gene therapy and genome editing for human hemoglobinopathies such as β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Hua Yang
- Department of Radiology, Institute of Cell and Gene Therapy, The Third Xiangya Hospital, Central South University, Changsha, China; Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Geoffrey D Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mario Mietzsch
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Brad E Hoffman
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mengqun Tan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Wang
- Department of Radiology, Institute of Cell and Gene Therapy, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
12
|
Chambers CB, Gross J, Pratt K, Guo X, Byrnes C, Lee YT, Lavelle D, Dean A, Miller JL, Wilber A. The mRNA-Binding Protein IGF2BP1 Restores Fetal Hemoglobin in Cultured Erythroid Cells from Patients with β-Hemoglobin Disorders. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:429-440. [PMID: 32154328 PMCID: PMC7056608 DOI: 10.1016/j.omtm.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Sickle cell disease (SCD) and β-thalassemia are caused by structural abnormality or inadequate production of adult hemoglobin (HbA, α2β2), respectively. Individuals with either disorder are asymptomatic before birth because fetal hemoglobin (HbF, α2γ2) is unaffected. Thus, reversal of the switch from HbF to HbA could reduce or even prevent symptoms these disorders. In this study, we show that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is one factor that could accomplish this goal. IGF2BP1 is a fetal factor that undergoes a transcriptional switch consistent with the transition from HbF to HbA. Lentivirus delivery of IGF2BP1 to CD34+ cells of healthy adult donors reversed hemoglobin production toward the fetal type in culture-differentiated erythroid cells. Analogous studies using patient-derived CD34+ cells revealed that IGF2BP1-dependent HbF induction could ameliorate the chain imbalance in β-thalassemia or potently suppress expression of sickle β-globin in SCD. In all cases, fetal γ-globin mRNA increased and adult β-globin decreased due, in part, to formation of contacts between the locus control region (LCR) and γ-globin genes. We conclude that expression of IGF2BP1 in adult erythroid cells has the potential to maximize HbF expression in patients with severe β-hemoglobin disorders by reversing the developmental γ- to β-globin switch.
Collapse
Affiliation(s)
- Christopher B Chambers
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Jeffrey Gross
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Katherine Pratt
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen Byrnes
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Y Terry Lee
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald Lavelle
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery L Miller
- Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.,Simmons Cancer Institute, Springfield, IL 62702, USA
| |
Collapse
|
13
|
Richard F, Lier JJ, Roubert B, Haboubi T, Göhring U, Dürrenberger F. Oral ferroportin inhibitor VIT-2763: First-in-human, phase 1 study in healthy volunteers. Am J Hematol 2020; 95:68-77. [PMID: 31674058 PMCID: PMC6916274 DOI: 10.1002/ajh.25670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Restriction of iron availability by ferroportin inhibition is a novel approach to treating non‐transfusion‐dependent thalassemia (β‐thalassemia intermedia). This first‐in‐human, Phase I study (https://www.clinicaltrialsregister.eu; EudraCT no. 2017‐003395‐31) assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of single‐ and multiple‐ascending doses (SAD and MAD) of the oral ferroportin inhibitor, VIT‐2763, in healthy volunteers. Participants received VIT‐2763 5/15/60/120/240 mg or placebo in the SAD phase and VIT‐2763 60/120 mg once daily, VIT‐2763 60/120 mg twice daily, or placebo for 7 days in the MAD phase. Seventy‐two participants completed treatment. VIT‐2763 was well tolerated and demonstrated a similar safety profile to the placebo. There were no serious or severe adverse events, or discontinuations due to adverse events. VIT‐2763 absorption was relatively fast, with detectable levels 15 to 30 minutes post‐dose. Following multiple dosing there was no apparent change in absorption and accumulation was minimal. Mean elimination half‐life was 1.9 to 5.3 hours following single dosing, and 2.1 to 3.8 hours on Day 1 and 2.6 to 5.3 hours on Day 7, following repeated dosing. There was a temporary decrease in mean serum iron levels with VIT‐2763 single doses ≥60 mg and all multiple doses; mean calculated transferrin saturation (only assessed following multiple dosing) also temporarily decreased. A shift in mean serum hepcidin peaks followed administration of all iron‐lowering doses of VIT‐2763. This effect was less pronounced after 7 days of multiple dosing (aside from with 120 mg once daily). These results support the initiation of clinical studies in patients with non‐transfusion‐dependent thalassemia and documented iron overload due to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Frank Richard
- Research and Development, Vifor Pharma Group Glattbrugg Switzerland
| | - Jan Jaap Lier
- Early Development Services, PRA Health Sciences Groningen Netherlands
| | - Bernard Roubert
- Research and Development, Vifor Pharma Group Glattbrugg Switzerland
| | - Teba Haboubi
- Research and Development, Vifor Pharma Group Glattbrugg Switzerland
| | | | - Franz Dürrenberger
- Chemical and Preclinical Research and Development, Vifor (International) AG St. Gallen Switzerland
| |
Collapse
|
14
|
Uchida N, Hsieh MM, Raines L, Haro-Mora JJ, Demirci S, Bonifacino AC, Krouse AE, Metzger ME, Donahue RE, Tisdale JF. Development of a forward-oriented therapeutic lentiviral vector for hemoglobin disorders. Nat Commun 2019; 10:4479. [PMID: 31578323 PMCID: PMC6775231 DOI: 10.1038/s41467-019-12456-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy is being evaluated for hemoglobin disorders including sickle cell disease (SCD). Therapeutic globin vectors have demanding requirements including high-efficiency transduction at the HSC level and high-level, erythroid-specific expression with long-term persistence. The requirement of intron 2 for high-level β-globin expression dictates a reverse-oriented globin-expression cassette to prevent its loss from RNA splicing. Current reverse-oriented globin vectors can drive phenotypic correction, but they are limited by low vector titers and low transduction efficiencies. Here we report a clinically relevant forward-oriented β-globin-expressing vector, which has sixfold higher vector titers and four to tenfold higher transduction efficiency for long-term hematopoietic repopulating cells in humanized mice and rhesus macaques. Insertion of Rev response element (RRE) allows intron 2 to be retained, and β-globin production is observed in transplanted macaques and human SCD CD34+ cells. These findings bring us closer to a widely applicable gene therapy for hemoglobin disorders.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA.
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.
| | - Matthew M Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Lydia Raines
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan J Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Aylin C Bonifacino
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Allen E Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Mark E Metzger
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Robert E Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Cellular and Molecular Therapeutics Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Abstract
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Collapse
Affiliation(s)
- Marina Cavazzana
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Correspondence: Marina Cavazzana, Imagine Institute, 24 Boulevard de Montparnasse, 75015 Paris, France.
| | - Fulvio Mavilio
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Fulvio Mavilio, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| |
Collapse
|
16
|
Shangaris P, Loukogeorgakis SP, Subramaniam S, Flouri C, Jackson LH, Wang W, Blundell MP, Liu S, Eaton S, Bakhamis N, Ramachandra DL, Maghsoudlou P, Urbani L, Waddington SN, Eddaoudi A, Archer J, Antoniou MN, Stuckey DJ, Schmidt M, Thrasher AJ, Ryan TM, De Coppi P, David AL. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci Rep 2019; 9:11592. [PMID: 31406195 PMCID: PMC6690943 DOI: 10.1038/s41598-019-48078-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
In utero gene therapy (IUGT) to the fetal hematopoietic compartment could be used to treat congenital blood disorders such as β-thalassemia. A humanised mouse model of β-thalassemia was used, in which heterozygous animals are anaemic with splenomegaly and extramedullary hematopoiesis. Intrahepatic in utero injections of a β globin-expressing lentiviral vector (GLOBE), were performed in fetuses at E13.5 of gestation. We analysed animals at 12 and 32 weeks of age, for vector copy number in bone marrow, peripheral blood liver and spleen and we performed integration site analysis. Compared to noninjected heterozygous animals IUGT normalised blood haemoglobin levels and spleen weight. Integration site analysis showed polyclonality. The left ventricular ejection fraction measured using magnetic resonance imaging (MRI) in treated heterozygous animals was similar to that of normal non-β-thalassemic mice but significantly higher than untreated heterozygous thalassemia mice suggesting that IUGT ameliorated poor cardiac function. GLOBE LV-mediated IUGT normalised the haematological and anatomical phenotype in a heterozygous humanised model of β-thalassemia.
Collapse
Affiliation(s)
- Panicos Shangaris
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- UCL Institute of Child Health, UCL, London, United Kingdom.
| | | | | | - Christina Flouri
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | | | - Wei Wang
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Shanrun Liu
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Simon Eaton
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Nahla Bakhamis
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | | | | | - Luca Urbani
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Simon N Waddington
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ayad Eddaoudi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Joy Archer
- Central Diagnostic Services, Queen's Vet School Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, UCL, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Thomas M Ryan
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Paolo De Coppi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
17
|
Ghiaccio V, Chappell M, Rivella S, Breda L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol Diagn Ther 2019; 23:173-186. [PMID: 30701409 DOI: 10.1007/s40291-019-00383-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited monogenic disorders such as beta-hemoglobinopathies (BH) are fitting candidates for treatment via gene therapy by gene transfer or gene editing. The reported safety and efficacy of lentiviral vectors in preclinical studies have led to the development of several clinical trials for the addition of a functional beta-globin gene. Across trials, dozens of transfusion-dependent patients with sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT) have been treated via gene therapy and have achieved reduced transfusion requirements. While overall results are encouraging, the outcomes appear to be strongly influenced by the level of lentiviral integration in transduced cells after engraftment, as well as the underlying genotype resulting in thalassemia. In addition, the method of procurement of hematopoietic stem cells can affect their quality and thus the outcome of gene therapy both in SCD and TDT. This suggests that new studies aimed at maximizing the number of corrected cells with long-term self-renewal potential are crucial to ensure successful treatment for every patient. Recent advancements in gene transfer and bone marrow transplantation have improved the success of this approach, and the results obtained by using these strategies demonstrated significant improvement of gene transfer outcome in patients. The advent of new gene-editing technologies has suggested additional therapeutic options. These are primarily focused on correcting the defective beta-globin gene or editing the expression of genes or genomic segments that regulate fetal hemoglobin synthesis. In this review, we aim to establish the potential benefits of gene therapy for BH, to summarize the status of the ongoing trials, and to discuss the possible improvement or direction for future treatments.
Collapse
Affiliation(s)
- Valentina Ghiaccio
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maxwell Chappell
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Lidonnici MR, Paleari Y, Tiboni F, Mandelli G, Rossi C, Vezzoli M, Aprile A, Lederer CW, Ambrosi A, Chanut F, Sanvito F, Calabria A, Poletti V, Mavilio F, Montini E, Naldini L, Cristofori P, Ferrari G. Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for β-Thalassemia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:9-28. [PMID: 30320151 PMCID: PMC6178212 DOI: 10.1016/j.omtm.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/07/2018] [Indexed: 01/07/2023]
Abstract
Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for β-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of β-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for β-thalassemia.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ylenia Paleari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Mandelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Rossi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Vezzoli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carsten Werner Lederer
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Francesca Sanvito
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modeno, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Patrizia Cristofori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,GlaxoSmithKline Ware, Hertfordshire, UK
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: An update. Cytotherapy 2018; 20:899-910. [PMID: 29859773 PMCID: PMC6123269 DOI: 10.1016/j.jcyt.2018.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.
Collapse
Affiliation(s)
- Selami Demirci
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Leonard A, Tisdale J. Stem cell transplantation in sickle cell disease: therapeutic potential and challenges faced. Expert Rev Hematol 2018; 11:547-565. [PMID: 29883237 PMCID: PMC8459571 DOI: 10.1080/17474086.2018.1486703] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD) is the most common inherited hemoglobinopathy worldwide, and is a life-limiting disease with limited therapeutic options to reduce disease severity. Despite being a monogenic disorder, the clinical phenotypes of SCD are variable, with few reliable predictors of disease severity easily identifying patients where the benefits of curative therapy outweigh the risks. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative option, though significant advances in gene therapy raise the promise for additional curative methods. Areas covered: Allogeneic transplantation in SCD has evolved and improved over the last two decades, now offering a standard of care curative option using a human leukocyte antigen (HLA)-matched sibling donor. Many of the seminal transplantation studies are reviewed here, demonstrating how initial failures and successes have influenced and led to current HSCT strategies. Such strategies aim to overcome setbacks and limitations, and focus on conditioning regimens, immune suppression methods, the use alternative donor sources, and gene therapy approaches. Expert commentary: SCD is a curable disease. Each dedicated effort to refine transplantation methods, expand the donor pool, and bring gene therapy models to fruition will make enormous impacts reducing disease burden and improving outcomes and quality of life for patients with SCD.
Collapse
Affiliation(s)
- Alexis Leonard
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of
Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children’s National Health System, Washington, DC, USA
| | - John Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of
Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Sii-Felice K, Giorgi M, Leboulch P, Payen E. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice. Exp Hematol 2018; 64:12-32. [PMID: 29807062 DOI: 10.1016/j.exphem.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/19/2023]
Abstract
The β-hemoglobinopathies, transfusion-dependent β-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling βT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent β-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-β0/β0 genotype, representing more than half of all transfusion-dependent β-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with β0/β0 transfusion-dependent β-thalassemia or equivalent severity (βIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent β-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent β-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.
Collapse
Affiliation(s)
- Karine Sii-Felice
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Marie Giorgi
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Philippe Leboulch
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emmanuel Payen
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; INSERM, Paris, France.
| |
Collapse
|
22
|
Lidonnici MR, Ferrari G. Gene therapy and gene editing strategies for hemoglobinopathies. Blood Cells Mol Dis 2018; 70:87-101. [DOI: 10.1016/j.bcmd.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 10/24/2022]
|
23
|
Bhukhai K, de Dreuzy E, Giorgi M, Colomb C, Negre O, Denaro M, Gillet-Legrand B, Cheuzeville J, Paulard A, Trebeden-Negre H, Borwornpinyo S, Sii-Felice K, Maouche L, Down JD, Leboulch P, Payen E. Ex Vivo Selection of Transduced Hematopoietic Stem Cells for Gene Therapy of β-Hemoglobinopathies. Mol Ther 2018; 26:480-495. [PMID: 29221807 PMCID: PMC5835017 DOI: 10.1016/j.ymthe.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the βAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure's suitability for human clinical applications while affording the additional safety of conditional suicide.
Collapse
Affiliation(s)
- Kanit Bhukhai
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Edouard de Dreuzy
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Marie Giorgi
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Charlotte Colomb
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Olivier Negre
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio, Inc., Cambridge, MA 02141, USA; bluebird bio France, Fontenay aux Roses 92260, France
| | | | - Béatrix Gillet-Legrand
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Joëlle Cheuzeville
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Anaïs Paulard
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | | | | | - Karine Sii-Felice
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Leila Maouche
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France
| | - Julian D Down
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillippe Leboulch
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; Ramathibodi Hospital, Bangkok 10400, Thailand; Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | - Emmanuel Payen
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France.
| |
Collapse
|
24
|
Ferrari G, Cavazzana M, Mavilio F. Gene Therapy Approaches to Hemoglobinopathies. Hematol Oncol Clin North Am 2017; 31:835-852. [PMID: 28895851 DOI: 10.1016/j.hoc.2017.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality.
Collapse
Affiliation(s)
- Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Istituto Scientifico Ospedale San Raffaele, Via Olgettina 58, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Imagine Institute, 149 rue de Sèvres, Paris 75015, France; Paris Descartes University, INSERM UMR 1163, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| |
Collapse
|
25
|
Jackson LH, Vlachodimitropoulou E, Shangaris P, Roberts TA, Ryan TM, Campbell-Washburn AE, David AL, Porter JB, Lythgoe MF, Stuckey DJ. Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia. Sci Rep 2017; 7:43439. [PMID: 28240317 PMCID: PMC5327494 DOI: 10.1038/srep43439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
β-thalassemia (βT) is a genetic blood disorder causing profound and life threatening anemia. Current clinical management of βT is a lifelong dependence on regular blood transfusions, a consequence of which is systemic iron overload leading to acute heart failure. Recent developments in gene and chelation therapy give hope of better prognosis for patients, but successful translation to clinical practice is hindered by the lack of thorough preclinical testing using representative animal models and clinically relevant quantitative biomarkers. Here we demonstrate a quantitative and non-invasive preclinical Magnetic Resonance Imaging (MRI) platform for the assessment of βT in the γβ0/γβA humanized mouse model of βT. Changes in the quantitative MRI relaxation times as well as severe splenomegaly were observed in the heart, liver and spleen in βT. These data showed high sensitivity to iron overload and a strong relationship between quantitative MRI relaxation times and hepatic iron content. Importantly these changes preceded the onset of iron overload cardiomyopathy, providing an early biomarker of disease progression. This work demonstrates that multiparametric MRI is a powerful tool for the assessment of preclinical βT, providing sensitive and quantitative monitoring of tissue iron sequestration and cardiac dysfunction- parameters essential for the preclinical development of new therapeutics.
Collapse
Affiliation(s)
- Laurence H Jackson
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | | | | | - Thomas A Roberts
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Thomas M Ryan
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adrienne E Campbell-Washburn
- Laboratory of Imaging Technology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD, USA
| | - Anna L David
- Institute for Women's Health, University College London, London, UK
| | - John B Porter
- Department of Haematology, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| |
Collapse
|
26
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
27
|
Malik P. Gene Therapy for Hemoglobinopathies: Tremendous Successes and Remaining Caveats. Mol Ther 2016; 24:668-70. [PMID: 27081721 DOI: 10.1038/mt.2016.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Miyashiro SI, Massironi SMG, Mori CMC, Cruz CC, Hagiwara MK, Maiorka PC. A Mouse Model for Human Unstable Hemoglobin Santa Ana. Comp Med 2016; 66:437-444. [PMID: 28304246 PMCID: PMC5157958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
In the present study, we described the phenotype, histologic morphology, and molecular etiology of a mouse model of unstable hemoglobin Santa Ana. Hematologic evaluation of anemic mice (Anem/+) discovered after N-ethyl-N-nitrosourea mutagenesis revealed moderate anemia with intense reticulocytosis and polychromasia, followed by anisocytosis, macrocytosis, hypochromia, and intraerythrocytic inclusion and Heinz bodies. The mice also demonstrated hemoglobinuria, bilirubinemia, and erythrocytic populations with differing resistance to osmotic lysis. Splenomegaly (particularly in older mutant mice) and jaundice were apparent at necropsy. Histopathologic examination revealed dramatically increased hematopoiesis and hemosiderosis in hematopoietic organs and intracellular iron deposition in tubular renal cells. These data are characteristic of a congenital hemolytic regenerative anemia, similar to human anemias due to unstable hemoglobin. Genetic mapping assigned the affected gene to mouse chromosome 7, approximately 50 cM from the Hbb locus. The sequence of the mutant Hbb gene exhibited a T→C transversion at nucleotide 179 in Hbb-b1, leading to the substitution of proline for leucine at amino acid residue 88 and thus homologous to the genetic defect underlying Santa Ana anemia in humans.
Collapse
Affiliation(s)
- Samantha I Miyashiro
- Medical Clinic Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and AnimalMedicine and Animal Science Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil;,
| | - Carolina C Cruz
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Mitika K Hagiwara
- Medical Clinic Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paulo C Maiorka
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum Gene Ther 2016; 27:148-65. [PMID: 26886832 PMCID: PMC4779296 DOI: 10.1089/hum.2016.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. β(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Olivier Negre
- 1 bluebird bio, Cambridge, Massachusetts.,2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France
| | | | - Yves Beuzard
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France
| | | | - Philippe Bourget
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Salima Hacein-Bey
- 6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Leboulch
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,5 Mahidol University , Bangkok, Thailand .,7 Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital , Boston, Massachusetts
| | - Emmanuel Payen
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,8 INSERM , Paris, France
| |
Collapse
|
30
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
31
|
de Dreuzy E, Bhukhai K, Leboulch P, Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed J 2016; 39:24-38. [PMID: 27105596 PMCID: PMC6138429 DOI: 10.1016/j.bj.2015.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.
Collapse
Affiliation(s)
- Edouard de Dreuzy
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Kanit Bhukhai
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; Department of Medicine, Harvard Medical School and Genetics Division, Brigham and Women's Hospital, Boston MA, USA; Mahidol University and Ramathibodi Hospital, Bangkok, Thailand
| | - Emmanuel Payen
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; INSERM, Paris, France.
| |
Collapse
|
32
|
Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Deichmann A, Denaro M, de Dreuzy E, Finer M, Fronza R, Gillet-Legrand B, Joubert C, Kutner R, Leboulch P, Maouche L, Paulard A, Pierciey FJ, Rothe M, Ryu B, Schmidt M, von Kalle C, Payen E, Veres G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther 2015; 15:64-81. [PMID: 25429463 PMCID: PMC4440358 DOI: 10.2174/1566523214666141127095336] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
Abstract
A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced with a selfinactivating lentiviral vector (HPV569) containing an engineered β-globin gene (β(A-T87Q)-globin) in a subject with β thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold). An in vivo study in which 58 β-thalassemic mice were transplanted with vector- or mock-transduced syngenic bone marrow cells indicated sustained therapeutic efficacy. Secondary transplantations involving 108 recipients were performed to evaluate long-term safety. The six month study showed no hematological or biochemical toxicity. Integration site (IS) profile revealed an oligo/polyclonal hematopoietic reconstitution in the primary transplants and reduced clonality in secondary transplants. Tumor cells were detected in the secondary transplant mice in all treatment groups (including the control group), without statistical differences in the tumor incidence. Immunohistochemistry and quantitative PCR demonstrated that tumor cells were not derived from transduced donor cells. This comprehensive efficacy and safety data provided the basis for initiating two clinical trials with this second generation vector (BB305) in Europe and in the USA in patients with β-thalassemia major and sickle cell disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gabor Veres
- bluebird bio, 150 Second Street, Cambridge, MA 02141, USA.
| |
Collapse
|
33
|
Saliba AN, Alameddine RS, Harb AR, Taher AT. Globin gene regulation for treating β-thalassemias: progress, obstacles and future. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Yannaki E, Karponi G. Current Status and Developments in Gene Therapy for Thalassemia and Sickle Cell Disease. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
β-thalassemias and sickle cell anemia (SCA) are the most common monogenic diseases worldwide for which curative treatments remain a desired goal. Allogeneic hematopoietic stem cell transplantation (allo-HCT), - the only curative treatment currently available for hemoglobinopaties-, has a narrow application window whereas it incurs several immunological risks. Gene therapy (GT), that is the autologous transplantation of genetically modified hematopoietic stem cells (CD34+), represents a promising new therapeutic strategy which is anticipated to reestablish effective hemoglobin production and render patients transfusion- and drug- independent without the immunological complications that normally accompany allo-HCT. Prior to the application of GT for hemoglobinopathies in the clinic, many years of extensive preclinical research were spent for the optimization of the gene transfer tools and conditions. To date, three GT clinical trials for β-thalassemia and sickle cell disease (SCD) have been conducted or are in progress and 3 cases of transfusion independence in thalassemic β0/βΕ patients have been reported. In the present review, the prerequisites for successful implementation of GT, the tough pathway of GT for hemoglobinopathies towards the clinic and the knowledge gained from the first clinical trials as well as the remaining questions and challenges, will be discussed. Overall, after decades of research including achievements but pitfalls as well, the path to GT of human patients with hemoglobinopathies is currently open and highly promising...
Collapse
|
35
|
Acuto S, Baiamonte E, Di Stefano R, Spina B, Barone R, Maggio A. Development and Recent Progresses of Gene Therapy for β-Thalassemia. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-thalassemias are among the most common inherited monogenic disorders worldwide due to mutations in the β-globin gene that reduce or abolish the production of the β-globin chain resulting in transfusion-dependent chronic anemia. Currently, the only curative treatment is allogeneic hematopoietic stem cells (HSCs) transplantation, but this option is limited by the a vailability of HLA-matched donor. Gene therapy, based on autologous transplantation of genetically corrected HSCs, holds the promise to treat patients lacking a compati ble bone marrow donor. I nit ial attempts of gene transfer have been unsuccessful due to limitations of available vectors to stably transfer a globin gene in HSCs and reach high and regulated expression in the erythroid progeny. With the advent of lentiviral vectors (LVs), based on human immunodeficiency virus, many of the initial limitations have been overcome. Since 2000 when Sadelain and co-workers first demonstrated successful globin gene transfer in murine thalassemia models with improvement of the phenotype using a recombinant β globin/LV, several other groups have developed different vectors encoding either β, γ or mutated globin genes and confirmed these results in both murine models and erythroid progeny derived from patient’s HSCs. In light of these encouraging results, research has recently moved into clinical trials that are ongoing or soon to begin. One participant in an ongoing gene transfer trial for β-thalassemia has achieved clinical benefit with elimination of his transfusi on re quirement. Here , dev elopmen t and recent progress of gene therapy for β-thalassemia is reviewed.
Collapse
|
36
|
Yang G, Shi W, Hu X, Zhang J, Gong Z, Guo X, Ren Z, Zeng F. Therapeutic effects of induced pluripotent stem cells in chimeric mice with β-thalassemia. Haematologica 2014; 99:1304-11. [PMID: 24816238 DOI: 10.3324/haematol.2013.087916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although β-thalassemia is one of the most common human genetic diseases, there is still no effective treatment other than bone marrow transplantation. Induced pluripotent stem cells have been considered good candidates for the future repair or replacement of malfunctioning organs. As a basis for developing transgenic induced pluripotent stem cell therapies for thalassemia, β(654) induced pluripotent stem cells from a β(654) -thalassemia mouse transduced with the normal human β-globin gene, and the induced pluripotent stem cells with an erythroid-expressing reporter GFP were used to produce chimeric mice. Using these chimera models, we investigated changes in various pathological indices including hematologic parameters and tissue pathology. Our data showed that when the chimerism of β(654) induced pluripotent stem cells with the normal human β-globin gene in β(654) mice is over 30%, the pathology of anemia appeared to be reversed, while chimerism ranging from 8% to 16% provided little improvement in the typical β-thalassemia phenotype. Effective alleviation of thalassemia-related phenotypes was observed when chimerism with the induced pluripotent stem cells owning the erythroid-expressing reporter GFP in β(654) mouse was greater than 10%. Thus, 10% or more expression of the exogenous normal β-globin gene reduces the degree of anemia in our β-thalassemia mouse model, whereas treatment with β(654) induced pluripotent stem cells which had the normal human β-globin gene had stable therapeutic effects but in a more dose-dependent manner.
Collapse
Affiliation(s)
- Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Insitute of Medical Science, School of Medicine, Shanghai Jiaotong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Wansheng Shi
- Insitute of Medical Science, School of Medicine, Shanghai Jiaotong University
| | - Xingyin Hu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Insitute of Medical Science, School of Medicine, Shanghai Jiaotong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Jingzhi Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Zhijuan Gong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Xinbing Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Zhaorui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University Insitute of Medical Science, School of Medicine, Shanghai Jiaotong University Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Laboratory of Embryo and Reproduction Engineering, China
| |
Collapse
|
37
|
Kamoun PP. Gene therapy: a novel way to treat respiratory failure? Med Hypotheses 2014; 82:719-20. [PMID: 24679667 DOI: 10.1016/j.mehy.2014.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 03/08/2014] [Indexed: 11/17/2022]
Abstract
Respiratory failure leads to tissue hypoxia and subsequent organ damage. The crocodile hemoglobin affinity for oxygen is significantly reduced in the presence of CO2, allowing crocodiles to stay under water for more than 1h. The crocodile bicarbonate effect can possibly be transplanted into the human hemoglobin by replacing only five and seven amino acid residues in the β-globin and α-globin chains, respectively. The resulting hybrid formed by these modified chains has been named Scuba hemoglobin. The in vitro production of Scuba hemoglobin by human hematopoietic stem cells and their reintroduction into the blood could be an interesting tool to improve tissue oxygenation in patients suffering from respiratory failure.
Collapse
Affiliation(s)
- Pierre P Kamoun
- Paris V University, 26 rue de Chartres, 92200 Neuilly, France.
| |
Collapse
|
38
|
Larochelle A, Dunbar CE. Hematopoietic stem cell gene therapy:assessing the relevance of preclinical models. Semin Hematol 2014; 50:101-30. [PMID: 24014892 DOI: 10.1053/j.seminhematol.2013.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Breda L, Rivella S, Zuccato C, Gambari R. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia. Expert Rev Hematol 2013; 6:255-64. [PMID: 23782080 DOI: 10.1586/ehm.13.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | |
Collapse
|
40
|
Arora N, Daley GQ. Pluripotent stem cells in research and treatment of hemoglobinopathies. Cold Spring Harb Perspect Med 2013; 2:a011841. [PMID: 22474618 DOI: 10.1101/cshperspect.a011841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pluripotent stem cells (PSCs) hold great promise for research and treatment of hemoglobinopathies. In principle, patient-specific induced pluripotent stem cells could be derived from a blood sample, genetically corrected to repair the disease-causing mutation, differentiated into hematopoietic stem cells (HSCs), and returned to the patient to provide a cure through autologous gene and cell therapy. However, there are many challenges at each step of this complex treatment paradigm. Gene repair is currently inefficient in stem cells, but use of zinc finger nucleases and transcription activator-like effector nucleases appear to be a major advance. To date, no successful protocol exists for differentiating PSCs into definitive HSCs. PSCs can be directly differentiated into primitive red blood cells, but not yet in sufficient numbers to enable treating patients, and the cost of clinical scale differentiation is prohibitively expensive with current differentiation methods and efficiencies. Here we review the progress, promise, and remaining hurdles in realizing the potential of PSCs for cell therapy.
Collapse
Affiliation(s)
- Natasha Arora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA; Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
41
|
Dong A, Rivella S, Breda L. Gene therapy for hemoglobinopathies: progress and challenges. Transl Res 2013; 161:293-306. [PMID: 23337292 PMCID: PMC3716457 DOI: 10.1016/j.trsl.2012.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.
Collapse
Affiliation(s)
- Alisa Dong
- Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Song L, Li X, Jayandharan GR, Wang Y, Aslanidi GV, Ling C, Zhong L, Gao G, Yoder MC, Ling C, Tan M, Srivastava A. High-efficiency transduction of primary human hematopoietic stem cells and erythroid lineage-restricted expression by optimized AAV6 serotype vectors in vitro and in a murine xenograft model in vivo. PLoS One 2013; 8:e58757. [PMID: 23516552 PMCID: PMC3597592 DOI: 10.1371/journal.pone.0058757] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
We have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs), and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y) residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F) AAV6 vector, with which >70% of CD34+ cells could be transduced. With the long-term objective of developing recombinant AAV vectors for the potential gene therapy of human hemoglobinopathies, we generated the wild-type (WT) and tyrosine-mutant AAV6 vectors containing the following erythroid cell-specific promoters: β-globin promoter (βp) with the upstream hyper-sensitive site 2 (HS2) enhancer from the β-globin locus control region (HS2-βbp), and the human parvovirus B19 promoter at map unit 6 (B19p6). Transgene expression from the B19p6 was significantly higher than that from the HS2-βp, and increased up to 30-fold and up to 20-fold, respectively, following erythropoietin (Epo)-induced differentiation of CD34+ cells in vitro. Transgene expression from the B19p6 or the HS2-βp was also evaluated in an immuno-deficient xenograft mouse model in vivo. Whereas low levels of expression were detected from the B19p6 in the WT AAV6 capsid, and that from the HS2-βp in the Y705+731F AAV6 capsid, transgene expression from the B19p6 promoter in the Y705+731F AAV6 capsid was significantly higher than that from the HS2-βp, and was detectable up to 12 weeks post-transplantation in primary recipients, and up to 6 additional weeks in secondary transplanted animals. These data demonstrate the feasibility of the use of the novel Y705+731F AAV6-B19p6 vectors for high-efficiency transduction of HSCs as well as expression of the b-globin gene in erythroid progenitor cells for the potential gene therapy of human hemoglobinopathies such as β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Liujiang Song
- Experimental Hematology Laboratory, Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Shenzhen Institute of Xiangya Biomedicine, Shenzhen, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Xiaomiao Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Giridhara R. Jayandharan
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
- Center for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Yuan Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - George V. Aslanidi
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Li Zhong
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology & Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mervin C. Yoder
- Herman B Well Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqun Tan
- Experimental Hematology Laboratory, Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Shenzhen Institute of Xiangya Biomedicine, Shenzhen, China
- * E-mail: (MT); (AS)
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (MT); (AS)
| |
Collapse
|
43
|
Abstract
Abstract
High-level production of β-globin, γ-globin, or therapeutic mutant globins in the RBC lineage by hematopoietic stem cell gene therapy ameliorates or cures the hemoglobinopathies sickle cell disease and beta thalassemia, which are major causes of morbidity and mortality worldwide. Considerable efforts have been made in the last 2 decades in devising suitable gene-transfer vectors and protocols to achieve this goal. Five years ago, the first βE/β0-thalassemia major (transfusion-dependent) patient was treated by globin lentiviral gene therapy without injection of backup cells. This patient has become completely transfusion independent for the past 4 years and has global amelioration of the thalassemic phenotype. Partial clonal dominance for an intragenic site (HMGA2) of chromosomal integration of the vector was observed in this patient without a loss of hematopoietic homeostasis. Other patients are now receiving transplantations while researchers are carefully weighing the benefit/risk ratio and continuing the development of further modified vectors and protocols to improve outcomes further with respect to safety and efficacy.
Collapse
|
44
|
Abstract
Retroviral vector-mediated gene transfer into hematopoietic stem cells provides a potentially curative therapy for severe β-thalassemia. Lentiviral vectors based on human immunodeficiency virus have been developed for this purpose and have been shown to be effective in curing thalassemia in mouse models. One participant in an ongoing clinical trial has achieved transfusion independence after gene transfer into bone marrow stem cells owing, in part, to a genetically modified, dominant clone. Ongoing efforts are focused on improving the efficiency of lentiviral vector-mediated gene transfer into stem cells so that the curative potential of gene transfer can be consistently achieved.
Collapse
|
45
|
Raja JV, Rachchh MA, Gokani RH. Recent advances in gene therapy for thalassemia. J Pharm Bioallied Sci 2012; 4:194-201. [PMID: 22923960 PMCID: PMC3425167 DOI: 10.4103/0975-7406.99020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 12/10/2011] [Indexed: 11/16/2022] Open
Abstract
Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
Affiliation(s)
- J V Raja
- Department of Pharmacology, S. J. Thakkar Pharmacy College, Rajkot, Gujarat, India
| | | | | |
Collapse
|
46
|
Chemoselection of allogeneic HSC after murine neonatal transplantation without myeloablation or post-transplant immunosuppression. Mol Ther 2012; 20:2180-9. [PMID: 22871662 DOI: 10.1038/mt.2012.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The feasibility of allogeneic transplantation, without myeloablation or post-transplant immunosuppression, was tested using in vivo chemoselection of allogeneic hematopoietic stem cells (HSCs) after transduction with a novel tricistronic lentiviral vector (MGMT(P140K)-2A-GFP-IRES-TK (MAGIT)). This vector contains P140K-O(6)-methylguanine-methyltransferase (MGMT(P140K)), HSV-thymidine kinase (TK(HSV)), and enhanced green fluorescent protein (eGFP) enabling (i) in vivo chemoselection of HSC by conferring resistance to benzylguanine (BG), an inhibitor of endogenous MGMT, and to chloroethylating agents such as 1,3-bis(2-chloroethyl)nitrosourea (BCNU) and, (ii) depletion of proliferating cells such as malignant clones or transduced donor T cells mediating graft versus host disease (GVHD), by expression of the suicide gene TK(HSV) and Ganciclovir (GCV) administration. Non-myeloablative transplantation of transduced, syngeneic, lineage-depleted (Lin(-)) BM in neonates resulted in 0.67% GFP(+) mononuclear cells in peripheral blood. BG/BCNU chemoselection, 4 and 8 weeks post-transplant, produced 50-fold donor cell enrichment. Transplantation and chemoselection of major histocompatibility complex (MHC)-mismatched MAGIT-transduced Lin(-) BM also produced similar expansion for >40 weeks. The efficacy of this allotransplant approach was validated in Hbb(th3) heterozygous mice by correction of β-thalassemia intermedia, without toxicity or GVHD. Negative selection, by administration of GCV resulted in donor cell depletion without graft ablation, as re-expansion of donor cells was achieved with BG/BCNU treatment. These studies show promise for developing non-ablative allotransplant approaches using in vivo positive/negative selection.
Collapse
|
47
|
Uchida N, Hargrove PW, Lap CJ, Evans ME, Phang O, Bonifacino AC, Krouse AE, Metzger ME, Nguyen AD, Hsieh MM, Wolfsberg TG, Donahue RE, Persons DA, Tisdale JF. High-efficiency transduction of rhesus hematopoietic repopulating cells by a modified HIV1-based lentiviral vector. Mol Ther 2012; 20:1882-92. [PMID: 22871664 DOI: 10.1038/mt.2012.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gambari R. Alternative options for DNA-based experimental therapy of β-thalassemia. Expert Opin Biol Ther 2012; 12:443-62. [PMID: 22413823 DOI: 10.1517/14712598.2012.665047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Beta-thalassemias are caused by more than 200 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been made with innovative therapeutic strategies for β-thalassemias, based on research conducted at the levels of gene structure, transcription, mRNA processing and protein synthesis. AREAS COVERED The objective of this review is to describe the development of therapeutic strategies employing viral and non-viral DNA-based approaches for treatment of β-thalassemia. EXPERT OPINION Modification of β-globin gene expression in β-thalassemia cells has been achieved by gene therapy, correction of the mutated β-globin gene and RNA repair. In addition, cellular therapy has been proposed for β-thalassemia, including reprogramming of somatic cells to generate induced pluripotent stem cells to be genetically corrected. Based on the concept that increased production of fetal hemoglobin (HbF) is beneficial in β-thalassemia, DNA-based approaches to increase HbF production have been optimized, including treatment of target cells with lentiviral vectors carrying γ-globin genes. Finally, DNA-based targeting of α-globin gene expression has been applied to reduce the excess of α-globin production by β-thalassemia cells, one of the major causes of the clinical phenotype.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Biochemistry and Molecular Biology, BioPharmaNet and Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Ferrara, Italy.
| |
Collapse
|
49
|
Sloma I, Imren S, Beer PA, Zhao Y, Lecault V, Leung D, Raghuram K, Brimacombe C, Lambie K, Piret J, Hansen C, Humphries RK, Eaves CJ. Ex vivo expansion of normal and chronic myeloid leukemic stem cells without functional alteration using a NUP98HOXA10homeodomain fusion gene. Leukemia 2012; 27:159-69. [PMID: 22868969 PMCID: PMC3542630 DOI: 10.1038/leu.2012.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
HOX genes have been implicated as regulators of normal and leukemic stem cell functionality, but the extent to which these activities are linked is poorly understood. Previous studies revealed that transduction of primitive mouse hematopoietic cells with a NUP98HOXA10homeodomain (NA10HD) fusion gene enables a subsequent rapid and marked expansion in vitro of hematopoietic stem cell numbers without causing their transformation or deregulated expansion in vivo. To determine whether forced expression of NA10HD in primitive human cells would have a similar effect, we compared the number of long-term culture-initiating cells (LTC-ICs) present in cultures of lenti-NA10HD versus control virus-transduced CD34(+) cells originally isolated from human cord blood and chronic phase (CP) chronic myeloid leukemia (CML) patients. We found that NA10HD greatly increases outputs of both normal and Ph(+)/BCR-ABL(+) LTC-ICs, and this effect is particularly pronounced in cultures containing growth factor-producing feeders. Interestingly, NA10HD did not affect the initial cell cycle kinetics of the transduced cells nor their subsequent differentiation. Moreover, immunodeficient mice repopulated with NA10HD-transduced CP-CML cells for more than 8 months showed no evidence of altered behavior. Thus, NA10HD provides a novel tool to enhance both normal and CP-CML stem cell expansion in vitro, without apparently altering other properties.
Collapse
Affiliation(s)
- I Sloma
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mattar CN, Biswas A, Choolani M, Chan JKY. The case for intrauterine stem cell transplantation. Best Pract Res Clin Obstet Gynaecol 2012; 26:683-95. [PMID: 22809469 DOI: 10.1016/j.bpobgyn.2012.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 12/14/2022]
Abstract
The clinical burden imposed by the collective group of monogenic disorders demands novel therapies that are effective at achieving phenotypic cure early in the disease process before the development of permanent organ damage. This is important for lethal diseases and also for non-perinatally lethal conditions that are characterised by severe disability with little prospect of postnatal cure. Where postnatal treatments are limited to palliative options, intrauterine stem-cell therapies may offer the potential to arrest pathogenesis in the early undamaged fetus. Intrauterine stem-cell transplantation has been attempted for a variety of diseases, but has only been successful in immune deficiency states in the presence of a competitive advantage for donor cells. This disappointing clinical record requires preclinical investigations into strategies that improve donor cell engraftment, including optimising the donor cell source and manipulating the microenvironment to facilitate homing. This chapter aims to outline the current challenges of intrauterine stem-cell therapy.
Collapse
Affiliation(s)
- Citra N Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|