1
|
Liu KY, Leung D. Epigenetic Dysregulation of Retrotransposons in Cancer. Mol Cancer Res 2025; 23:369-378. [PMID: 39945628 DOI: 10.1158/1541-7786.mcr-24-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 05/03/2025]
Abstract
Approximately 97% of the human genome comprises noncoding sequences, with nearly half originating from transposable elements. Among these, retrotransposons represent a critical subclass that replicates via a "copy-and-paste" mechanism and significantly influences the regulation of host genomes. In both normal and pathologic contexts, retrotransposons contribute to a vast reservoir of regulatory elements that can modulate the expression of genes. If left unchecked, retrotransposons can substantially affect host transcriptional programs and genomic integrity. Therefore, various mechanisms, including epigenetic modifications, have been employed to mitigate their potentially deleterious effects. In diseases such as cancer, the epigenome is often significantly reprogrammed, which can lead to retrotransposon dysregulation. Drawing insights from recent studies conducted in human and murine cells, this review examines how retrotransposons expand the complexity of mammalian genomes, describes the impact of their epigenetic dysregulation on cancer development, and highlights the potential of targeting these sequences for therapeutic strategies.
Collapse
Affiliation(s)
- Kwok Yu Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
2
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
3
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
4
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
5
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
6
|
Li Y, Pan K, Gao Y, Li J, Zang Y, Li X. Deconvoluting nitric oxide-protein interactions with spatially resolved multiplex imaging. Chem Sci 2024; 15:6562-6571. [PMID: 38699271 PMCID: PMC11062118 DOI: 10.1039/d4sc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Simultaneous imaging of nitric oxide (NO) and its proximal proteins should facilitate the deconvolution of NO-protein interactions. While immunostaining is a primary assay to localize proteins in non-genetically manipulated samples, NO imaging probes with immunostaining-compatible signals remain unexplored. Herein, probe NOP-1 was developed with an NO-triggered proximal protein labeling capacity and fluorogenic signals. The trick is to fuse the native chemical ligation of acyl benzotriazole with the protein-conjugation-induced fluorogenic response of Si-rhodamine fluorophore. NOP-1 predominantly existed in the non-fluorescent spirocyclic form. Yet, its acyl o-phenylenediamine moiety was readily activated by NO into acyl benzotriazole to conjugate proximal proteins, providing a fluorogenic response and translating the transient cellular NO signal into a permanent stain compatible with immunostaining. NOP-1 was utilized to investigate NO signaling in hypoglycemia-induced neurological injury, providing direct evidence of NO-induced apoptosis during hypoglycemia. Mechanistically, multiplex imaging revealed the overlap of cellular NOP-1 fluorescence with immunofluorescence for α-tubulin and NO2-Tyr. Importantly, α-tubulin was resolved from NOP-1 labeled proteins. These results suggest that NO played a role in hypoglycemia-induced apoptosis, at least in part, through nitrating α-tubulin. This study fills a crucial gap in current imaging probes, providing a valuable tool for unraveling the complexities of NO signaling in biological processes.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
| | - Kaijun Pan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Yanan Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Yi Zang
- Lingang Laboratory Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Xin Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University Jiashan 314100 China
| |
Collapse
|
7
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|
8
|
Kelly A, Lavender P. Epigenetic Approaches to Identifying Asthma Endotypes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:130-141. [PMID: 38528381 DOI: 10.4168/aair.2024.16.2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
The prevalence of asthma escalated rapidly in the late 20th century. In 2019, the World Health Organization estimated the global number of people affected by the condition to be approximately 260 million, causing 450,000 deaths during that year. While there have been advances in therapeutics with the emergence of biologics targeting T2-high asthma, there is still little clarity on the mechanisms underlying the origins of both the condition and all of its endotypes. Several biomarkers for particular asthma phenotypes have been documented. These are generally identified from transcriptomics and proteomics protocols and tend to be biased to T2-high phenotypes. In this review, we summarize some suggestions that analysis of epigenomes may provide alternative datasets that inform of broader asthma endotypes and might highlight pathways amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London, London, United Kingdom.
| |
Collapse
|
9
|
Ge D, Chen Q, Xie X, Li Q, Yang Y. Unveiling the potent effect of vitamin D: harnessing Nrf2/HO-1 signaling pathways as molecular targets to alleviate urban particulate matter-induced asthma inflammation. BMC Pulm Med 2024; 24:55. [PMID: 38273268 PMCID: PMC10809564 DOI: 10.1186/s12890-024-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1β, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.
Collapse
Affiliation(s)
- Dandan Ge
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qihong Chen
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Xiaohua Xie
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiang'an South Road, Xiamen, 361102, China
| | - Yungang Yang
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China.
| |
Collapse
|
10
|
Di Giorgio E, Cortolezzis Y, Gualandi N, Agostini F, Rapozzi V, Xodo LE. NRF2 interacts with distal enhancer and inhibits nitric oxide synthase 2 expression in KRAS-driven pancreatic cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119606. [PMID: 37852325 DOI: 10.1016/j.bbamcr.2023.119606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nitric oxide is a pleiotropic free radical produced by three nitric oxide synthases (NOS1-3), of which inducible NOS2 is involved in tumor initiation and progression. In this study, RNA-seq, ChIP-seq and qRT-PCR experiments combined with bioinformatic analyses showed that NRF2 is a repressor of NOS2 gene by maintaining a distal enhancer located 22 kb downstream of TSS in an inactive state. Deletion of NRF2 leads to activation of the enhancer, which exerts a pioneering function before it is fully activated. Specifically, NRF2 controls the expression of NOS2 in response to intracellular oxidative stress and extracellular oxygen pressure. We found that abrogation of NOS2 expression by siRNAs partially reduced the ability of WT Panc-1 cells to form 3D spheroids, but strongly reduced the formation of 3D spheroids by NRF2-depleted Panc-1 cells. Mechanistically, this effect correlates with the finding that NOS2 and nitric oxide stimulate epithelial-to-mesenchymal transition in NRF2-depleted Panc-1 and MIA PaCa-2 cells. We also found that knockdown of NOS2 leads to blockade of 3D matrigel invasion of NRF2-depleted PDAC cells, demonstrating that a short-circuit in the reciprocal regulation of NOS2 and NRF2 attenuates the malignancy of PDAC cells. In summary, we show for the first time that: (i) NRF2 is a suppressor of NOS2 in pancreatic cancer cells; (ii) NRF2 binds to and inactivates an enhancer located 22 kb downstream of TSS of the NOS2 gene; (iii) activation of NOS2 requires suppression of NRF2; (iv) NOS2 is required for NRF2-depleted Panc-1 cells to maintain their malignancy and invasiveness.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy.
| | - Ylenia Cortolezzis
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Nicolò Gualandi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Francesca Agostini
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
11
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
13
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Ma L, Li C, Yin H, Huang J, Yu S, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. The Mechanism of DNA Methylation and miRNA in Breast Cancer. Int J Mol Sci 2023; 24:9360. [PMID: 37298314 PMCID: PMC10253858 DOI: 10.3390/ijms24119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the most prevalent cancer in the world. Currently, the main treatments for breast cancer are radiotherapy, chemotherapy, targeted therapy and surgery. The treatment measures for breast cancer depend on the molecular subtype. Thus, the exploration of the underlying molecular mechanisms and therapeutic targets for breast cancer remains a hotspot in research. In breast cancer, a high level of expression of DNMTs is highly correlated with poor prognosis, that is, the abnormal methylation of tumor suppressor genes usually promotes tumorigenesis and progression. MiRNAs, as non-coding RNAs, have been identified to play key roles in breast cancer. The aberrant methylation of miRNAs could lead to drug resistance during the aforementioned treatment. Therefore, the regulation of miRNA methylation might serve as a therapeutic target in breast cancer. In this paper, we reviewed studies on the regulatory mechanisms of miRNA and DNA methylation in breast cancer from the last decade, focusing on the promoter region of tumor suppressor miRNAs methylated by DNMTs and the highly expressed oncogenic miRNAs inhibited by DNMTs or activating TETs.
Collapse
Affiliation(s)
- Lingyuan Ma
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Chenyu Li
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Hanlin Yin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jiashu Huang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Shenghao Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| |
Collapse
|
15
|
Alshamrani AA, Alshehri S, Alqarni SS, Ahmad SF, Alghibiwi H, Al-Harbi NO, Alqarni SA, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13:metabo13030458. [PMID: 36984898 PMCID: PMC10057726 DOI: 10.3390/metabo13030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis. Nat Commun 2023; 14:621. [PMID: 36739439 PMCID: PMC9899281 DOI: 10.1038/s41467-023-36232-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023] Open
Abstract
DNA methyltransferases (DNMTs) catalyze methylation at the C5 position of cytosine with S-adenosyl-L-methionine. Methylation regulates gene expression, serving a variety of physiological and pathophysiological roles. The chemical mechanisms regulating DNMT enzymatic activity, however, are not fully elucidated. Here, we show that protein S-nitrosylation of a cysteine residue in DNMT3B attenuates DNMT3B enzymatic activity and consequent aberrant upregulation of gene expression. These genes include Cyclin D2 (Ccnd2), which is required for neoplastic cell proliferation in some tumor types. In cell-based and in vivo cancer models, only DNMT3B enzymatic activity, and not DNMT1 or DNMT3A, affects Ccnd2 expression. Using structure-based virtual screening, we discovered chemical compounds that specifically inhibit S-nitrosylation without directly affecting DNMT3B enzymatic activity. The lead compound, designated DBIC, inhibits S-nitrosylation of DNMT3B at low concentrations (IC50 ≤ 100 nM). Treatment with DBIC prevents nitric oxide (NO)-induced conversion of human colonic adenoma to adenocarcinoma in vitro. Additionally, in vivo treatment with DBIC strongly attenuates tumor development in a mouse model of carcinogenesis triggered by inflammation-induced generation of NO. Our results demonstrate that de novo DNA methylation mediated by DNMT3B is regulated by NO, and DBIC protects against tumor formation by preventing aberrant S-nitrosylation of DNMT3B.
Collapse
|
17
|
Nagarajan N, Oka SI, Nah J, Wu C, Zhai P, Mukai R, Xu X, Kashyap S, Huang CY, Sung EA, Mizushima W, Titus AS, Takayama K, Mourad Y, Francisco J, Liu T, Chen T, Li H, Sadoshima J. Thioredoxin 1 promotes autophagy through transnitrosylation of Atg7 during myocardial ischemia. J Clin Invest 2023; 133:e162326. [PMID: 36480290 PMCID: PMC9888389 DOI: 10.1172/jci162326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S-nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.
Collapse
Affiliation(s)
- Narayani Nagarajan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Changgong Wu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School and Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Xiaoyong Xu
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Sanchita Kashyap
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Chun-Yang Huang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine National Yang-Ming University, Taipei, Taiwan
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Koichiro Takayama
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Youssef Mourad
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School and Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Tong Chen
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School and Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School and Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
18
|
Tan Y, Wang Z, Liu T, Gao P, Xu S, Tan L. RNA interference-mediated silencing of DNA methyltransferase 1 attenuates neuropathic pain by accelerating microglia M2 polarization. BMC Neurol 2022; 22:376. [PMID: 36183073 PMCID: PMC9526327 DOI: 10.1186/s12883-022-02860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1) exerts imperative functions in neuropathic pain (NP). This study explored the action of RNA interference-mediated DNMT1 silencing in NP by regulating microglial M2 polarization. Methods NP rat models were established using chronic constriction injury (CCI) and highly aggressive proliferating immortalized (HAPI) microglia were treated with lipopolysaccharide (LPS) to induce microglia M1 polarization, followed by treatment of DNMT1 siRNA or si-DNMT1/oe-DNMT1, respectively. The pain threshold of CCI rats was assessed by determining mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Levels of inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) and DNMT1 in rat L4-L6 spinal cord samples and HAPI cells were measured using ELISA, RT-qPCR, and Western blot. iNOS and Arg-1 mRNA levels were measured via RT-qPCR. DNMT1, M1 marker (iNOS), and M2 marker (Arg-1) levels in microglia of CCI rats were detected by immunofluorescence. Percentages of M1 microglia phenotype (CD16) and M2 microglia phenotype (CD206) were detected by flow cytometry. The phosphorylation of PI3K/Akt pathway-related proteins was determined by Western blot. Results CCI rats exhibited diminished MWT and TWL values, increased pro-inflammatory cytokines, and decreased anti-inflammatory cytokine IL-10. Additionally, DNMT1 was upregulated in CCI rat microglia. DNMT1 siRNA alleviated CCI-induced NP and facilitated M2 polarization of microglia in CCI rats. DNMT1 knockdown inhibited LPS-induced M1 polarization of HAPI cells and promoted M2 polarization by blocking the PI3K/Akt pathway, but DNMT1 overexpression inhibited the M1-to-M2 polarization of microglia. Conclusion RNA interference-mediated DNMT1 silencing accelerates microglia M2 polarization by impeding the PI3K/Akt pathway, thereby alleviating CCI-induced NP. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02860-6.
Collapse
Affiliation(s)
- Ying Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| | - Zongjiang Wang
- Department of Spinal Surgery, Sunshine Union Hospital, Weifang, 261041, China
| | - Tao Liu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Peng Gao
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Shitao Xu
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China
| | - Lei Tan
- Department of Spinal Surgery, Weifang Traditional Chinese Medicine Hospital, No.1055, Weizhou Road, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|