1
|
Kochlamazashvili G, Swaminathan A, Stumpf A, Kumar A, Posor Y, Schmitz D, Haucke V, Kuijpers M. Neuronal autophagy controls excitability via ryanodine receptor-mediated regulation of calcium-activated potassium channel function. Proc Natl Acad Sci U S A 2025; 122:e2413651122. [PMID: 40267139 DOI: 10.1073/pnas.2413651122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Glutamate-mediated neuronal hyperexcitation plays a causative role in eliciting seizures and promoting epileptogenesis. Recent data suggest that altered autophagy can contribute to the occurrence of epilepsy. We examined the role of autophagy in neuronal physiology by generating knockout mice conditionally lacking the essential autophagy protein ATG5 in glutamatergic neurons. We demonstrate that conditional genetic blockade of neuronal autophagy results in action potential narrowing, axonal hyperexcitability, and an increase in kainate-induced epileptiform bursts ex vivo, indicative of a lower threshold for the induction of epileptic seizures. Neuronal hyperexcitability in hippocampal slices from conditional ATG5 knockout mice is due to elevated activity of the large conductance calcium-activated potassium channel BKCa downstream of calcium influx via the endoplasmic reticulum (ER)-localized calcium channel ryanodine receptor (RYR). Consistently, pharmacological blockade of RYR or BKCa function rescued hyperexcitability and reduced the frequency of kainate-induced epileptiform bursts in ATG5 cKO brain slices. Our findings reveal a physiological role for neuronal autophagy in the regulation of neuronal excitability via the control of RYR-mediated calcium release, and thereby, calcium-activated potassium channel function in the mammalian brain.
Collapse
Affiliation(s)
- Gaga Kochlamazashvili
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Aarti Swaminathan
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Alexander Stumpf
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Amit Kumar
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - York Posor
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Dietmar Schmitz
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Marijn Kuijpers
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
2
|
Kawai T, Dong P, Bakhurin K, Yin HH, Yang H. Calcium-activated ion channels drive atypical inhibition in medial habenula neurons. SCIENCE ADVANCES 2025; 11:eadq2629. [PMID: 40106550 PMCID: PMC11922023 DOI: 10.1126/sciadv.adq2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Nicotine is an addictive substance that poses substantial health and societal challenges. Despite the known links between the medial habenula (MHb) and nicotine avoidance, the ionic mechanisms underlying MHb neuronal responses to nicotine remain unclear. Here, we report that MHb neurons use a long-lasting refractory period (LLRP) as an unconventional inhibitory mechanism to curb hyperexcitability. This process is initiated by nicotine-induced calcium influx through nicotinic acetylcholine receptors, which activates a calcium-activated chloride channel (CaCC). Owing to high intracellular chloride levels in MHb neurons, chloride efflux through CaCC, coupled with high-threshold voltage-gated calcium channels, sustains MHb depolarization near the chloride equilibrium potential of -30 millivolts, thereby enabling LLRP. Concurrently, calcium-activated BK potassium channels counteract this depolarization, promoting LLRP termination. Our findings reveal an atypical inhibitory mechanism, orchestrated by synergistic actions between calcium-permeable and calcium-activated channels. This discovery advances our understanding of neuronal excitability control and nicotine addiction.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Konstantin Bakhurin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Tang YB, Tang L, Chen B, Fan MJ, Chen GJ, Ou YN, Yang F, Wu XZ. Intranasal oxytocin alleviates postsurgical pain and comorbid anxiety in mice: Participation of BK(Ca) channels in the hippocampus. Neuropharmacology 2025; 265:110243. [PMID: 39631680 DOI: 10.1016/j.neuropharm.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments. We reported that plantar incision in mice induced anxiety-like behaviors and mechanical pain hypersensitivity, with a concurrent decrease of the oxytocin receptor (OTR) in the hippocampus. The immunofluorescence staining showed that the OTR were enriched in pyramidal neurons in CA3 subregion of hippocampus and which were highly co-expressed with the BK(Ca) channels in CA3 subregion. Intranasal OXT significantly ameliorated this postsurgical pain and associated anxiety in a dose-dependent manner, while Intra-CA3 microinjection of OTR antagonist atosiban or the BK(Ca) channel blocker paxilline reduced the effect of OXT in incisional mice. Moreover, intra-CA3 microinjection of BK(Ca) channel opener NS1619 produced a similar effect on postsurgical pain and associated anxiety-like behaviors as those observed following intranasal OXT administration. Conversely, intra-CA3 microinjection of BK(Ca) channel blocker paxilline in normal mice was sufficient to evoke mechanical pain hypersensitivity. Taken together, our data suggested that intranasal OXT administration exerted analgesic and anxiolytic effects in incisional mice by opening BK(Ca) channels in the CA3 subregion of hippocampus.
Collapse
Affiliation(s)
- Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China; Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, PR China
| | - Li Tang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology, Qingdao University, Qingdao, Shandong, PR China
| | - Bin Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Miao-Jie Fan
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gao-Jie Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yu-Ning Ou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
4
|
Kim A, Bae Y, Gadhe CG, Jung HG, Yang E, Kim H, Lee J, Shim C, Sung YH, Noh J, Kim EJ, Kang D, Pae AN, Hwang EM, Park JY. Mice deficient in TWIK-1 are more susceptible to kainic acid-induced seizures. iScience 2025; 28:111587. [PMID: 39811670 PMCID: PMC11732521 DOI: 10.1016/j.isci.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
TWIK-1 belongs to the two-pore domain K+ (K2P) channel family, which plays an essential role in the background K+ conductance of cells. Despite the development of exon 2-deleted Twik-1 knockout (KO) mice, the physiological role of TWIK-1 has remained largely unknown. Here, we observed that the exon 2-deleted Twik-1 KO mice expressed an internally deleted TWIK-1 (TWIK-1 ΔEx2) protein, which unexpectedly acts as a functional K+ channel. The Twik-1 nKO mice in which exon 1 was targeted using the CRISPR-Cas9 technique provides strong evidence that TWIK-1 mediates K+ currents that are responsible for the background passive conductance in astrocytes. Deficiency of TWIK-1-mediated astrocytic passive conductance increased susceptibility to kainic acid-induced seizures. This study paves the way for functional studies on TWIK-1-mediated astrocytic passive conductance. In addition, the exon 1-targeted Twik-1 KO mice would help elucidate the physiological roles of TWIK-1.
Collapse
Affiliation(s)
- Ajung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeonju Bae
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Changdev G. Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyun-Gug Jung
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jaekwang Lee
- Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | | | - Young Hoon Sung
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Junyeol Noh
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Kim
- Department of Physiology and Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- Astrion, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Zhang G, Niu Y, Xu Z, Qin J, Yang Z. SETD1B variants associated with absence seizures. Eur J Paediatr Neurol 2025; 54:68-74. [PMID: 39765123 DOI: 10.1016/j.ejpn.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 03/28/2025]
Abstract
AIM Exploring the association between SETD1B variants and absence seizures (ASs). METHODS We engaged a small cohort of four pediatric epilepsy patients with identified SETD1B variants and conducted a comprehensive review of 50 documented instances. Clinical profiles were meticulously compiled, and genetic screening was executed via trio-based whole-exome sequencing. Our literature survey centered on AS manifestations linked to SETD1B alterations, utilizing descriptive statistics for analysis. RESULTS The quartet of new cases presented with developmental impediments, cognitive deficits, and epileptic manifestations. Pathogenicity was established in the detected SETD1B variants. Among the 54 individuals, 26 (accounting for 48.1 %) presented with AS during the course of the disease. The median seizure onset age stood at 44.8 months, with a majority displaying cognitive challenges and autistic traits. Anti-epileptic drug therapies proved efficacious in 70.8 % of the instances. Notably, variants within the N-SET, SET, and post-SET domains of SETD1B were prevalent in 46.2 % of the AS-afflicted cohort. DISCUSSION Our findings accentuate the potential influence of SETD1B variants in AS pathogenesis, these variants may perturb neuronal excitability, possibly via modulation of histone methylation landscapes. The insights garnered here deepen our grasp of AS's genetic architecture. CONCLUSION Our study identified four novel SETD1B variants, highlighting that the importance of AS as part of the phenotype among individuals with SETD1B, demonstrated by 3 novel cases, and supported by review of the literature. Our findings also suggest that the SET domains may play a potential role in the pathogenesis of AS, providing a clue for future mechanistic research.
Collapse
Affiliation(s)
- Genfu Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Dinsdale RL, Meredith AL. Evaluation of four KCNMA1 channelopathy variants on BK channel current under Ca V1.2 activation. Channels (Austin) 2024; 18:2396346. [PMID: 39217512 PMCID: PMC11370921 DOI: 10.1080/19336950.2024.2396346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Variants in KCNMA1, encoding the voltage- and calcium-activated K+ (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca2+ conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca2+ channels and respond to dynamic changes in intracellular Ca2+ (Ca2+i). In this study, an L-type voltage-gated Ca2+ channel present in the brain, CaV1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under CaV1.2 activation using buffering conditions that restrict Ca2+i to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to CaV1.2 Ca2+ influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca2+i. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca2+ stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under CaV1.2-mediated Ca2+ influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for KCNMA1 variant pathogenicity compared under diverse voltage and Ca2+ conditions.
Collapse
Affiliation(s)
- Ria L. Dinsdale
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Debanne D, Mylonaki K, Musella ML, Russier M. Voltage-gated ion channels in epilepsies: circuit dysfunctions and treatments. Trends Pharmacol Sci 2024; 45:1018-1032. [PMID: 39406591 DOI: 10.1016/j.tips.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Epileptic encephalopathies are generally considered to be functional disruptions in the balance between neural excitation and inhibition. Excitatory and inhibitory voltage-gated ion channels are key targets of antiepileptic drugs, playing a critical role in regulating neuronal excitation and synaptic transmission. Recent research has highlighted the significance of ion channels in various aspects of epilepsy, including presynaptic neurotransmitter release, intrinsic neuronal excitability, and neural synchrony. Genetic alterations in excitatory and inhibitory ion channels within principal neurons and in inhibitory interneurons have also been identified as key contributors to the development of epilepsies. We review these recent studies and shed light on the bidirectional relationship between epilepsy and neuronal excitability and the latest advancements in pharmacological therapeutics targeting ion channels for epilepsy treatment.
Collapse
|
8
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
9
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. Biophys J 2024; 123:1984-2000. [PMID: 38042986 PMCID: PMC11309989 DOI: 10.1016/j.bpj.2023.11.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryoelectron microscopy-resolved structures, including 21 classified as either gain of function (GOF) or loss of function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUSs), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 meta score (KMS)), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca2+-bound and unbound BK channels. KMS assessment differed from the highest-performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUSs, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
Affiliation(s)
- Hans J Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kelly Tammen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
10
|
Dong P, Bakhurin K, Li Y, Mikati MA, Cui J, Grill WM, Yin HH, Yang H. Attenuating midline thalamus bursting to mitigate absence epilepsy. Proc Natl Acad Sci U S A 2024; 121:e2403763121. [PMID: 38968111 PMCID: PMC11252967 DOI: 10.1073/pnas.2403763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy.
Collapse
Affiliation(s)
- Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC27710
| | | | - Yuhui Li
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Mohamad A. Mikati
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
- Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
- Department of Neurosurgery, Duke University Medical Center, Durham, NC27710
| | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC27708
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
11
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
13
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
14
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550850. [PMID: 37546746 PMCID: PMC10402178 DOI: 10.1101/2023.07.27.550850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryo-EM resolved structures, including 21 classified as either gain-of-function (GOF) or loss-of-function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca 2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUS), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 Meta Score), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca 2+ bound and unbound BK channels. KMS assessment differed from the highest performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUS, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
|
15
|
Dinsdale RL, Roache CE, Meredith AL. Disease-associated KCNMA1 variants decrease circadian clock robustness in channelopathy mouse models. J Gen Physiol 2023; 155:e202313357. [PMID: 37728576 PMCID: PMC10510740 DOI: 10.1085/jgp.202313357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
KCNMA1 encodes the voltage- and calcium-activated K+ (BK) channel, which regulates suprachiasmatic nucleus (SCN) neuronal firing and circadian behavioral rhythms. Gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity disrupt circadian behavior, but the effect of human disease-associated KCNMA1 channelopathy variants has not been studied on clock function. Here, we assess circadian behavior in two GOF and one LOF mouse lines. Heterozygous Kcnma1N999S/WT and homozygous Kcnma1D434G/D434G mice are validated as GOF models of paroxysmal dyskinesia (PNKD3), but whether circadian rhythm is affected in this hypokinetic locomotor disorder is unknown. Conversely, homozygous LOF Kcnma1H444Q/H444Q mice do not demonstrate PNKD3. We assessed circadian behavior by locomotor wheel running activity. All three mouse models were rhythmic, but Kcnma1N999S/WT and Kcnma1D434G/D434G showed reduced circadian amplitude and decreased wheel activity, corroborating prior studies focused on acute motor coordination. In addition, Kcnma1D434G/D434G mice had a small decrease in period. However, the phase-shifting sensitivity for both GOF mouse lines was abnormal. Both Kcnma1N999S/WT and Kcnma1D434G/D434G mice displayed increased responses to light pulses and took fewer days to re-entrain to a new light:dark cycle. In contrast, the LOF Kcnma1H444Q/H444Q mice showed no difference in any of the circadian parameters tested. The enhanced sensitivity to phase-shifting stimuli in Kcnma1N999S/WT and Kcnma1D434G/D434G mice was similar to other Kcnma1 GOF mice. Together with previous studies, these results suggest that increasing BK channel activity decreases circadian clock robustness, without rhythm ablation.
Collapse
Affiliation(s)
- Ria L. Dinsdale
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cooper E. Roache
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Sheng H, Lu D, Qi X, Ling Y, Li J, Zhang X, Dong W, Chen W, Gao S, Gao X, Zhang L, Zhang L. A neuron-specific Isca1 knockout rat developments multiple mitochondrial dysfunction syndromes. Animal Model Exp Med 2023; 6:155-167. [PMID: 37140997 PMCID: PMC10158949 DOI: 10.1002/ame2.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Multiple mitochondrial dysfunction syndromes (MMDS) are rare mitochondrial diseases caused by mutation of mitochondrial iron-sulfur cluster synthesis proteins. This study established a rat model simulating MMDS5 disease in the nervous system to investigate its pathological features and neuronal death. METHODS We generated neuron-specific Isca1 knockout rat (Isca1flox/flox -NeuN-Cre) using CRISPR-Cas9 technology. The brain structure changes of CKO rats were studied with MRI, and the behavior abnormalities were analyzed through gait analysis and open field tests, Y maze tests and food maze tests. The pathological changes of neurons were analyzed through H&E staining, Nissl staining, and Golgi staining. Mitochondrial damage was assessed by TEM, western blot and ATP assay, and the morphology of neurons was assessed by WGA immunofluorescence to detect the death of neurons. RESULTS This study established the disease model of MMDS5 in the nervous system for the first time, and found that after Isca1 loss, the rats suffered from developmental retardation, epilepsy, memory impairment, massive neuronal death, reduced number of Nissl bodies and dendritic spines, mitochondrial fragmentation, cristae fracture, reduced content of respiratory chain complex protein, and reduced production of ATP. Isca1 knockout caused neuronal oncosis. CONCLUSIONS This rat model can be used to study the pathogenesis of MMDS. In addition, compared with human MMDS5, the rat model can survive up to 8 weeks of age, effectively extending the window of clinical treatment research, and can be used for the treatment of neurological symptoms in other mitochondrial diseases.
Collapse
Affiliation(s)
- Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yahao Ling
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
18
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|