1
|
Jacobs J, Salmaniw Y, Lam KY, Zhai L, Wang H, Zhang B. Fundamental principles of the effect of habitat fragmentation on species with different movement rates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14424. [PMID: 39699289 DOI: 10.1111/cobi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 12/20/2024]
Abstract
Habitat loss and fragmentation have independent impacts on biodiversity; thus, field studies are needed to distinguish their impacts. Moreover, species with different locomotion rates respond differently to fragmentation, complicating direct comparisons of the effects of habitat loss and fragmentation across differing taxa and landscapes. To overcome these challenges, we combined mechanistic mathematical modeling and laboratory experiments to compare how species with different locomotion rates were affected by low (∼80% intact) and high (∼30% intact) levels of habitat loss. In our laboratory experiment, we used Caenorhabditis elegans strains with different locomotion rates and subjected them to the different levels of habitat loss and fragmentation by placing Escherichia coli (C. elegans food) over different proportions of the Petri dish. We developed a partial differential equation model that incorporated spatial and biological phenomena to predict the impacts of habitat arrangement on populations. Only species with low rates of locomotion declined significantly in abundance as fragmentation increased in areas with low (p = 0.0270) and high (p = 0.0243) levels of habitat loss. Despite that species with high locomotion rates changed little in abundance regardless of the spatial arrangement of resources, they had the lowest abundance and growth rates in all environments because the negative effect of fragmentation created a mismatch between the population distribution and the resource distribution. Our findings shed new light on incorporating the role of locomotion in determining the effects of habitat fragmentation.
Collapse
Affiliation(s)
- Jamaal Jacobs
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurij Salmaniw
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, Alberta, Canada
| | - King-Yeung Lam
- Department of Mathematics, Ohio State University, Columbus, Ohio, USA
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Giacomuzzo E, Peller T, Gounand I, Altermatt F. Ecosystem Size Mediates the Effects of Resource Flows on Species Diversity and Ecosystem Function at Different Scales. Ecol Evol 2024; 14:e70709. [PMID: 39691433 PMCID: PMC11650751 DOI: 10.1002/ece3.70709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Ecosystem size and spatial resource flows are key factors driving species diversity and ecosystem function. However, the question of whether and how these drivers interact has been largely overlooked. Here, we investigated how ecosystem size asymmetry affects species diversity and function of two-patch meta-ecosystems connected through flows of nonliving resources. We conducted a microcosm experiment, mimicking resource flows between ecosystems of different sizes yet otherwise identical properties or between ecosystems of the same size. Meta-ecosystems with asymmetric ecosystem sizes displayed higher α-diversity but lower β-diversity and ecosystem function (total biomass) than their unconnected counterparts. At the same time, such an effect was not found for meta-ecosystems of identical patch sizes. Our work demonstrates how the size of ecosystems, interconnected via resource flows, can modulate cross-ecosystem dynamics, having implications for species diversity and function across scales.
Collapse
Affiliation(s)
- Emanuele Giacomuzzo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Tianna Peller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Isabelle Gounand
- Institut D'écologie et Des Sciences De L'environnement (iEES Paris)Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRAParisFrance
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
3
|
Padmanabha P, Nicoletti G, Bernardi D, Suweis S, Azaele S, Rinaldo A, Maritan A. Landscape and environmental heterogeneity support coexistence in competitive metacommunities. Proc Natl Acad Sci U S A 2024; 121:e2410932121. [PMID: 39436657 PMCID: PMC11536131 DOI: 10.1073/pnas.2410932121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Metapopulation models have been instrumental in quantifying the ecological impact of landscape structure on the survival of a focal species. However, extensions to multiple species with arbitrary dispersal networks often rely on phenomenological assumptions that inevitably limit their scope. Here, we propose a multilayer network model of competitive dispersing metacommunities to investigate how spatially structured environments impact species coexistence and ecosystem stability. We introduce the concept of landscape-mediated fitness, quantifying how fit a species is in a given environment in terms of colonization and extinction. We show that, when all environments are equivalent, one species excludes all the others-except the marginal case where species fitnesses are in exact trade-off. However, we prove that stable coexistence becomes possible in sufficiently heterogeneous environments by introducing spatial disorder in the model and solving it exactly in the mean-field limit. Crucially, coexistence is supported by the spontaneous localization of species through the emergence of ecological niches. We show that our results remain qualitatively valid in arbitrary dispersal networks, where topological features can improve species coexistence by buffering competition. Finally, we employ our model to study how correlated heterogeneity promotes spatial ecological patterns in realistic terrestrial and riverine landscapes. Our work provides a framework to understand how landscape structure enables coexistence in metacommunities by acting as the substrate for ecological interactions.
Collapse
Affiliation(s)
- Prajwal Padmanabha
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- Department of Fundamental Microbiology, University of Lausanne, Lausanne1015, Switzerland
| | - Giorgio Nicoletti
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Davide Bernardi
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
| | - Samir Suweis
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| | - Sandro Azaele
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova35131, Italy
| | - Amos Maritan
- Department of Physics and Astronomy “Galileo Galilei,” University of Padova, Padova35131, Italy
- National Biodiversity Future Center, Palermo90133, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| |
Collapse
|
4
|
Zhang H, Chase JM, Liao J. Habitat amount modulates biodiversity responses to fragmentation. Nat Ecol Evol 2024; 8:1437-1447. [PMID: 38914711 DOI: 10.1038/s41559-024-02445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/23/2024] [Indexed: 06/26/2024]
Abstract
Anthropogenic habitat destruction leads to habitat loss and fragmentation, both of which interact to determine how biodiversity changes at the landscape level. While the detrimental effects of habitat loss are clear, there is a long-standing debate about the role of habitat fragmentation per se. We identify the influence of the total habitat amount lost as a modulator of the relationship between habitat fragmentation and biodiversity. Using a simple metacommunity model characterized by colonization-competition (C-C) trade-offs, we show that the magnitude of habitat loss can induce a unimodal response of biodiversity to habitat fragmentation. When habitat loss is low, habitat fragmentation promotes coexistence by suppressing competitively dominant species, while habitat fragmentation at high levels of habitat loss can shape many smaller isolated patches that drive extinctions of superior competitors. While the C-C trade-off is not the only mechanism for biodiversity maintenance, the modulation of habitat fragmentation effects by habitat loss is probably common. Reanalysis of a globally distributed dataset of fragmented animal and plant metacommunities shows an overall pattern that supports this hypothesis, suggesting a resolution to the debate regarding the relative importance of positive versus negative fragmentation effects.
Collapse
Affiliation(s)
- Helin Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jinbao Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China.
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
5
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
6
|
Wang S, Hong P, Adler PB, Allan E, Hautier Y, Schmid B, Spaak JW, Feng Y. Towards mechanistic integration of the causes and consequences of biodiversity. Trends Ecol Evol 2024; 39:689-700. [PMID: 38503639 DOI: 10.1016/j.tree.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The global biodiversity crisis has stimulated decades of research on three themes: species coexistence, biodiversity-ecosystem functioning relationships (BEF), and biodiversity-ecosystem functional stability relationships (BEFS). However, studies on these themes are largely independent, creating barriers to an integrative understanding of the causes and consequences of biodiversity. Here we review recent progress towards mechanistic integration of coexistence, BEF, and BEFS. Mechanisms underlying the three themes can be linked in various ways, potentially creating either positive or negative relationships between them. That said, we generally expect positive associations between coexistence and BEF, and between BEF and BEFS. Our synthesis represents an initial step towards integrating causes and consequences of biodiversity; future developments should include more mechanistic approaches and broader ecological contexts.
Collapse
Affiliation(s)
- Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China.
| | - Pubin Hong
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Centre for Development and Environment, University of Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jurg W Spaak
- Landscape ecology, RPTU Kaiserslautern Landau, 76829 Landau, Germany
| | - Yanhao Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
7
|
Chen Y, Niu L, Li Y, Wang Y, Shen J, Zhang W, Wang L. Distribution characteristics and microbial synergistic degradation potential of polyethylene and polypropylene in freshwater estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134328. [PMID: 38643575 DOI: 10.1016/j.jhazmat.2024.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.
Collapse
Affiliation(s)
- Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yingjie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
8
|
Wang Z, Chase JM, Xu W, Liu J, Wu D, Zhang A, Wang J, Luo Y, Yu M. Higher trophic levels and species with poorer dispersal traits are more susceptible to habitat loss on island fragments. Ecology 2024; 105:e4300. [PMID: 38650396 DOI: 10.1002/ecy.4300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024]
Abstract
Ongoing habitat loss and fragmentation caused by human activities represent one of the greatest causes of biodiversity loss. However, the effects of habitat loss and fragmentation are not felt equally among species. Here, we examined how habitat loss influenced the diversity and abundance of species from different trophic levels, with different traits, by taking advantage of an inadvertent experiment that created habitat islands from a once continuous forest via the creation of the Thousand Island Lake, a large reservoir in China. On 28 of these islands with more than a 9000-fold difference in their area (0.12-1154 ha), we sampled plants, herbivorous insects, and predatory insects using effort-controlled sampling and analyses. This allowed us to discern whether any observed differences in species diversity were due to passive sampling alone or to demographic effects that disproportionately influenced some species relative to others. We found that while most metrics of sampling effort-controlled diversity increased with island area, the strength of the effect was exacerbated for species in higher trophic levels. When we more explicitly examined differences in species composition among islands, we found that the pairwise difference in species composition among islands was dominated by species turnover but that nestedness increased with differences in island area, indicating that some species are more likely to be absent from smaller islands. Furthermore, by examining trends of several dispersal-related traits of species, we found that species with lower dispersal propensity tended to be those that were lost from smaller islands, which was observed for herbivorous and predatory insects. Our results emphasize the importance of incorporating within-patch demographic effects, as well as the taxa and traits of species when understanding the influence of habitat loss on biodiversity.
Collapse
Affiliation(s)
- Zhonghan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wubing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Donghao Wu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Aiying Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Jirui Wang
- School of Agricultural and Food Science, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yuanyuan Luo
- College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Mingjian Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Gordon SCC, Martin JGA, Kerr JT. Dispersal mediates trophic interactions and habitat connectivity to alter metacommunity composition. Ecology 2024; 105:e4215. [PMID: 38037245 DOI: 10.1002/ecy.4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Dispersal contributes vitally to metacommunity structure. However, interactions between dispersal and other key processes have rarely been explored, particularly in the context of multitrophic metacommunities. We investigated such a metacommunity in naturally fragmented habitats populated by butterfly species (whose dispersal capacities were previously assessed), flowering plants, and butterfly predators. Using data on butterfly species abundance, floral abundance, and predation (on experimentally placed clay butterfly models), we asked how dispersal ability mediates interactions with predators, mutualists, and the landscape matrix. In contrast to expectations, high densities of strong dispersers were found in more isolated sites and sites with low floral resource density, while intermediate dispersers maintained similar densities across isolation and floral gradients, and higher densities of poor dispersers were found in more connected sites and sites with higher floral density. These findings raise questions about how strong dispersers experience the landscape matrix and the quality of isolated and low-resource sites. Strong dispersers were able to escape habitat patches with high predation, while intermediate dispersers maintained similar densities along a predation gradient, and poor dispersers occurred at high densities in these patches, exposing them to interactions with predators. This work demonstrates that species that vary in dispersal capacities interact differently with predators and mutualist partners in a landscape context, shaping metacommunity composition.
Collapse
Affiliation(s)
- Susan C C Gordon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Deng J, Taylor W, Levin SA, Saavedra S. On the limits to invasion prediction using coexistence outcomes. J Theor Biol 2024; 577:111674. [PMID: 38008157 DOI: 10.1016/j.jtbi.2023.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The dynamics of ecological communities in nature are typically characterized by probabilistic processes involving invasion dynamics. Because of technical challenges, however, the majority of theoretical and experimental studies have focused on coexistence dynamics. Therefore, it has become central to understand the extent to which coexistence outcomes can be used to predict analogous invasion outcomes relevant to systems in nature. Here, we study the limits to this predictability under a geometric and probabilistic Lotka-Volterra framework. We show that while individual survival probability in coexistence dynamics can be fairly closely translated into invader colonization probability in invasion dynamics, the translation is less precise between community persistence and community augmentation, and worse between exclusion probability and replacement probability. These results provide a guiding and testable theoretical framework regarding the translatability of outcomes between coexistence and invasion outcomes when communities are represented by Lotka-Volterra dynamics under environmental uncertainty.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Washington Taylor
- Center for Theoretical Physics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| |
Collapse
|
11
|
Song C, Simmons BI, Fortin MJ, Gonzalez A, Kaiser-Bunbury CN, Saavedra S. Rapid monitoring of ecological persistence. Proc Natl Acad Sci U S A 2023; 120:e2211288120. [PMID: 37155860 PMCID: PMC10194002 DOI: 10.1073/pnas.2211288120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Effective conservation of ecological communities requires accurate and up-to-date information about whether species are persisting or declining to extinction. The persistence of an ecological community is supported by its underlying network of species interactions. While the persistence of the network supporting the whole community is the most relevant scale for conservation, in practice, only small subsets of these networks can be monitored. There is therefore an urgent need to establish links between the small snapshots of data conservationists can collect, and the "big picture" conclusions about ecosystem health demanded by policymakers, scientists, and societies. Here, we show that the persistence of small subnetworks (motifs) in isolation-that is, their persistence when considered separately from the larger network of which they are a part-is a reliable probabilistic indicator of the persistence of the network as a whole. Our methods show that it is easier to detect if an ecological community is not persistent than if it is persistent, allowing for rapid detection of extinction risk in endangered systems. Our results also justify the common practice of predicting ecological persistence from incomplete surveys by simulating the population dynamics of sampled subnetworks. Empirically, we show that our theoretical predictions are supported by data on invaded networks in restored and unrestored areas, even in the presence of environmental variability. Our work suggests that coordinated action to aggregate information from incomplete sampling can provide a means to rapidly assess the persistence of entire ecological networks and the expected success of restoration strategies.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Benno I. Simmons
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, PenrynTR10 9FE, United Kingdom
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02138
| |
Collapse
|
12
|
Diamond SE, Bellino G, Deme GG. Urban insect bioarks of the 21st century. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101028. [PMID: 37024047 DOI: 10.1016/j.cois.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
Insects exhibit divergent biodiversity responses to cities. Many urban populations are not at equilibrium: biodiversity decline or recovery from environmental perturbation is often still in progress. Substantial variation in urban biodiversity patterns suggests the need to understand its mechanistic basis. In addition, current urban infrastructure decisions might profoundly influence future biodiversity trends. Although many nature-based solutions to urban climate problems also support urban insect biodiversity, trade-offs are possible and should be avoided to maximize biodiversity-climate cobenefits. Because insects are coping with the dual threats of urbanization and climate change, there is an urgent need to design cities that facilitate persistence within the city footprint or facilitate compensatory responses to global climate change as species transit through the city footprint.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Grace Bellino
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gideon G Deme
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
14
|
Spaak JW, Ke P, Letten AD, De Laender F. Different measures of niche and fitness differences tell different tales. OIKOS 2022. [DOI: 10.1111/oik.09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jurg W. Spaak
- Dept of Ecology and Evolutionary Biology, Cornell Univ. Ithaca NY USA
| | - Po‐Ju Ke
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ. Taipei Taiwan
- Dept of Ecology&Evolutionary Biology, Princeton Univ. Princeton NJ USA
| | - Andrew D. Letten
- School of Biological Sciences, Univ. of Queensland Brisbane QLD Australia
| | - Frederik De Laender
- Univ. of Namur Namur Belgium
- Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Belgium
| |
Collapse
|