1
|
Xie L, Zhang R, Hu C, Li T, Zhang ZP, Jin MY, Gao R, Zhang ZR, Zheng W, Ju Y, Guo JP. Experimental validation of the molecular mechanism of phlorizin in the treatment of diabetic retinopathy. Exp Eye Res 2025; 254:110329. [PMID: 40058722 DOI: 10.1016/j.exer.2025.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
This study conducted an experiment to scrutinize the effect of phlorizin (Phl) on diabetic retinopathy (DR) and to delve into the related molecular mechanisms. Within this investigation, DR was induced in rats with diabetes mellitus (DM) by subjecting them to a regimen involving a high-fat and high-sugar diet, coupled with intraperitoneal administration of streptozotocin (STZ) at a dosage of 45 mg/kg. Retinal damage in DR rats was assessed by means of hematoxylin and eosin (HE) staining. The serum levels of inflammatory and angiogenic factors were also measured. Additionally, the levels of tight junction proteins, angiogenic proteins, and inflammatory proteins in the retinas of DR model rats were assessed using Western blot (WB),immunohistochemistry(IHC) and immunofluorescence(IF). Moreover, bioinformatics and network pharmacology methodologies were utilized to pinpoint intersecting genes linked to DR and to elucidate the mechanism of action of Phl. This involved screening with Venny, conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)analyses, constructing a Protein-Protein Interaction (PPI) network, and performing molecular docking analysis. The results of this study demonstrated that Phl significantly normalized fasting glucose levels and reduced body weight, thereby alleviating obesity in DR rats after 12 weeks. Furthermore, the serum levels of inflammatory and angiogenic factors were considerably reduced in the drug-treated rats. WB, IHC and IF revealed increased expression of the tight junction proteins zonula occludens-1(ZO-1) and occludin in the retinas of drug-treated DR rats, validating the observed findings. Molecular biology validation experiments based on the predictions by network pharmacology indicated a substantial decrease in the expression levels of vascular endothelial growth factor (VEGF), notch homolog 1 (Notch1), and hypoxia inducible factor-1 (HIF-1α) in the retina upon treatment with Phl. This reduction resulted in the inhibition of neovascularization. Furthermore, Phl exhibited inhibitory effects on inflammatory pathways, leading to a decrease in cytokine release. The overexpression of VEGF was identified as a factor diminishing brain-derived neurotrophic factor(BDNF) expression while increasing the expression levels of inflammatory proteins. Therefore, the results of this research demonstrate that Phl has the potential to protect the retina of DR rats by inhibiting VEGF expression. This protective effect may be associated with the modulation of the VEGF/BDNF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lulu Xie
- Changchun University of Traditional Chinese Medicine, Chang Chun, China
| | - Ru Zhang
- Changchun University of Traditional Chinese Medicine, Chang Chun, China
| | - Chunjie Hu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ting Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhao-Peng Zhang
- Changchun University of Traditional Chinese Medicine, Chang Chun, China
| | - Mei-Ying Jin
- Changchun University of Traditional Chinese Medicine Third Clinical Hospital, China
| | - Rui Gao
- Changchun University of Traditional Chinese Medicine, Chang Chun, China
| | - Zhi-Run Zhang
- Changchun University of Traditional Chinese Medicine, Chang Chun, China
| | - Wei Zheng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China.
| | - Yuan Ju
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China.
| | - Jun-Peng Guo
- Changchun University of Traditional Chinese Medicine, Chang Chun, China.
| |
Collapse
|
2
|
Cheng N, Luo Q, Yang Y, Shao N, Nie T, Deng X, Chen J, Zhang S, Huang Y, Hu K, Luo L, Xiao Z. Injectable pH Responsive Conductive Hydrogel for Intelligent Delivery of Metformin and Exosomes to Enhance Cardiac Repair after Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410590. [PMID: 39965141 DOI: 10.1002/advs.202410590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a leading cause of complications and high mortality associated with acute myocardial infarction. Injectable hydrogel emerges as a promising biomaterial for myocardial repair due to their ability to mimic the mechanical and electrophysiological properties of heart tissue. In this study, an injectable conductive hydrogel is developed that responds to the weakly acidic microenvironment of ischemic injury, enabling the intelligent release of metformin and exosomes to enhance cardiac repair following MIRI. This multifunctional hydrogel demonstrates self-healing properties, shear-thinning injectability, electrical conductivity, and an elastic modulus comparable to natural myocardium, alongside excellent biocompatibility. At the cellular level, the hydrogel system exhibits significant antioxidant, anti-apoptotic, improvement of electrophysiological characteristics, mitochondrial protection and angiogenic effects, with transcriptome sequencing revealing the effective activation of the PI3K/AKT, VEGF, and AMPK signaling pathways. In vivo studies further confirm that the hydrogel treatment reduces infarct size, cardiac fibrosis and incidence of arrhythmia, while improving ventricular ejection fraction and facilitating the restoration of cardiac function after MIRI. In conclusion, an injectable pH-responsive conductive hydrogel is presented that enables the intelligent delivery of metformin and exosomes, offering a promising and novel therapeutic approach for enhancing cardiac repair and treating MIRI.
Collapse
Affiliation(s)
- Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tianqi Nie
- Central laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liangping Luo
- Department of Radiology and Nuclear Medicine, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Capilla-López J, Hernández RG, Carrero-Rojas G, Calvo PM, Alvarez FJ, de la Cruz RR, Pastor AM. VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons. Int J Mol Sci 2024; 25:9942. [PMID: 39337430 PMCID: PMC11432591 DOI: 10.3390/ijms25189942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The potassium-chloride cotransporter KCC2 is the main extruder of Cl- in neurons. It plays a fundamental role in the activity of the inhibitory neurotransmitters (GABA and glycine) since low levels of KCC2 promote intracellular Cl- accumulation, leading to the depolarizing activity of GABA and glycine. The downregulation of this cotransporter occurs in neurological disorders characterized by hyperexcitability, such as epilepsy, neuropathic pain, and spasticity. KCC2 is also downregulated after axotomy. If muscle reinnervation is allowed, the KCC2 levels recover in motoneurons. Therefore, we argued that target-derived neurotrophic factors might be involved in the regulation of KCC2 expression. For this purpose, we performed the axotomy of extraocular motoneurons via the monocular enucleation of adult rats, and a pellet containing either VEGF or BDNF was chronically implanted in the orbit. Double confocal immunofluorescence of choline acetyl-transferase (ChAT) and KCC2 was carried out in the brainstem sections. Axotomy led to a KCC2 decrease in the neuropil and somata of extraocular motoneurons, peaking at 15 days post-lesion, with the exception of the abducens motoneuron somata. VEGF administration prevented the axotomy-induced KCC2 downregulation. By contrast, BDNF either maintained or reduced the KCC2 levels following axotomy, suggesting that BDNF is involved in the axotomy-induced KCC2 downregulation in extraocular motoneurons. The finding that VEGF prevents KCC2 decrease opens up new possibilities for the treatment of neurological disorders coursing with neuronal hyperactivity due to KCC2 downregulation.
Collapse
Affiliation(s)
- Jaime Capilla-López
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Génova Carrero-Rojas
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University Vienna, 1090 Vienna, Austria
| | - Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Iwahashi T, Suzuki K, Tanaka H, Matsuoka H, Nishimoto S, Hirai Y, Kasuya T, Shimada T, Yoshimura Y, Oka K, Murase T, Okada S. Neurotropin® accelerates peripheral nerve regeneration in a rat sciatic nerve crush injury model. J Orthop Sci 2024; 29:653-659. [PMID: 36858838 DOI: 10.1016/j.jos.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Peripheral nerve injuries are common and serious conditions. The effect of Neurotropin® (NTP), a nonprotein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, on peripheral nerve regeneration has not been fully elucidated. However, it has analgesic properties via the activation of descending pain inhibitory systems. Therefore, the current study aimed to determine the effects of NTP on peripheral nerve regeneration. METHODS We examined axonal outgrowth of dorsal root ganglion (DRG) neurons using immunocytochemistry in vitro. In addition, nerve regeneration was evaluated functionally, electrophysiologically, and histologically in a rat sciatic nerve crush injury model in vivo. Furthermore, gene expression of neurotrophic factors in the injured sciatic nerves and DRGs was evaluated. RESULTS In the dorsal root ganglion neurons in vitro, NTP promoted axonal outgrowth at a concentration of 10 mNU/mL. Moreover, the systemic administration of NTP contributed to the recovery of motor and sensory function at 2 weeks, and of sensory function, nerve conduction velocity, terminal latency, and axon-remyelination 4 weeks after sciatic nerve injury. In the gene expression assessment, insulin-like growth factor 1 and vascular endothelial growth factor expressions were increased in the injured sciatic nerve 2 days postoperatively. CONCLUSIONS Therefore, NTP might be effective in not only treating chronic pain but also promoting peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Sports Medical Science, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Itami City Hospital, Hyogo, 664-8540, Japan
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Yukio Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Abstract
Vascular endothelial growth factor (VEGF) is well known for its angiogenic activity, but recent evidence has revealed a neuroprotective action of this factor on injured or diseased neurons. In the present review, we summarize the most relevant findings that have contributed to establish a link between VEGF deficiency and neuronal degeneration. At issue, 1) mutant mice with reduced levels of VEGF show adult-onset muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis (ALS), 2) administration of VEGF to different animal models of motoneuron degeneration improves motor performance and ameliorates motoneuronal degeneration, and 3) there is an association between low plasmatic levels of VEGF and human ALS. Altogether, the results presented in this review highlight VEGF as an essential motoneuron neurotrophic factor endowed with promising therapeutic potential for the treatment of motoneuron disorders.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Hernández RG, Benítez-Temiño B, de la Cruz RR, Pastor AM. Relative contribution of lateral vestibular neuron and abducens internuclear neuron inputs to the discharge activity of medial rectus motoneurons. Brain Struct Funct 2024; 229:183-194. [PMID: 38032515 PMCID: PMC10827814 DOI: 10.1007/s00429-023-02736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Medial rectus motoneurons mediate nasally directed horizontal eye movements. These motoneurons receive two major excitatory inputs, from the abducens internuclear neurons (ABD Ints) and neurons of the lateral vestibular nucleus whose axons course through the ascending tract of Deiters (ATD). In the present work, we have recorded in the alert chronic cat preparation the discharge activity of these two premotor neurons simultaneously with eye movements, to discern their relative contribution to the firing pattern of medial rectus motoneurons. ABD Int discharge was accurately correlated with eye movements, displaying high sensitivities to eye position and eye velocity. ATD neurons also discharged in relation to spontaneous and vestibular eye movements but showed significantly lower eye position and eye velocity sensitivities. Outstandingly, ATD neurons presented a significantly lower eye position threshold for recruitment compared to both ABD Ints and medial rectus motoneurons. Therefore, ATD neurons exhibited eye position and velocity signals during spontaneous and vestibular eye movements, which were of lower magnitude than those of ABD Ints, but due to their low recruitment threshold, they could play a significant role in facilitating ABD Int signal transmission onto medial rectus motoneurons.
Collapse
Affiliation(s)
- Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain.
| | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain.
| |
Collapse
|
7
|
Di Stasi R, De Rosa L, D'Andrea LD. Structure-Based Design of Peptides Targeting VEGF/VEGFRs. Pharmaceuticals (Basel) 2023; 16:851. [PMID: 37375798 DOI: 10.3390/ph16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a main role in the regulation of angiogenesis and lymphangiogenesis. Furthermore, they are implicated in the onset of several diseases such as rheumatoid arthritis, degenerative eye conditions, tumor growth, ulcers and ischemia. Therefore, molecules able to target the VEGF and its receptors are of great pharmaceutical interest. Several types of molecules have been reported so far. In this review, we focus on the structure-based design of peptides mimicking VEGF/VEGFR binding epitopes. The binding interface of the complex has been dissected and the different regions challenged for peptide design. All these trials furnished a better understanding of the molecular recognition process and provide us with a wealth of molecules that could be optimized to be exploited for pharmaceutical applications.
Collapse
Affiliation(s)
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, 80131 Napoli, Italy
| | | |
Collapse
|
8
|
Ding R, Zhu S, Zhao X, Yue R. Vascular endothelial growth factor levels in diabetic peripheral neuropathy: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1169405. [PMID: 37251664 PMCID: PMC10213658 DOI: 10.3389/fendo.2023.1169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Vascular endothelial growth factors (VEGFs, including VEGF-A, VEGF-B, VEGF-C, VEGF-D and PLGF) have important roles in the development and function of the peripheral nervous system. Studies have confirmed that VEGFs, especially VEGF-A (so called VEGF) may be associated with the diabetic peripheral neuropathy (DPN) process. However, different studies have shown inconsistent levels of VEGFs in DPN patients. Therefore, we conducted this meta-analysis to evaluate the relationship between cycling levels of VEGFs and DPN. Methods This study searched 7 databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, WanFang Database, and Chinese Biomedical Literature (CBM), to find the target researches. The random effects model was used to calculate the overall effect. Results 14 studies with 1983 participants were included, among which 13 studies were about VEGF and 1 was VEGF-B, so only the effects of VEGF were pooled. The result showed that there were obviously increased VEGF levels in DPN patients compared with diabetic patients without DPN (SMD:2.12[1.34, 2.90], p<0.00001) and healthy people (SMD:3.50[2.24, 4.75], p<0.00001). In addition, increased circulating VEGF levels were not associated with an increased risk of DPN (OR:1.02[0.99, 1.05], p<0.00001). Conclusion Compared with healthy people and diabetic patients without DPN, VEGF content in the peripheral blood of DPN patients is increased, but current evidence does not support the correlation between VEGF levels and the risk of DPN. This suggests that VEGF may play a role in the pathogenesis and repairment of DPN.
Collapse
Affiliation(s)
- Rui Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shicong Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Zhao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Vemula SK, Kim SA, Muvavarirwa T, Bell JL, Whitman MC. Impaired Extraocular Muscle Innervation Is Present Before Eye Opening in a Mouse Model of Infantile Nystagmus Syndrome. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 36083589 PMCID: PMC9469029 DOI: 10.1167/iovs.63.10.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To determine if extraocular muscles (EOMs) from mice with nystagmus show abnormalities in myofiber composition and innervation, as seen in EOMs from human nystagmus patients, and to determine when in development those changes occur. Methods Balb/c albino mice were crossed to pigmented mice to generate heterozygous mice, which were mated to create experimental litters containing albinos and wild-type controls. Orbits were harvested from adult animals (12 weeks old); on postnatal day (P)0, P10, P14, and P21; and from 6-week-old animals. EOM sections were collected from the intraorbital portion of the muscles. Sections were immunostained for slow and fast myosin and for neuromuscular junctions (NMJs). The proportion of each myofiber subtype and the density and size of NMJs were quantified. Initial innervation patterns were assessed using whole-mount immunostaining of embryonic day (E)13.5 embryos expressing IslMN:GFP. Results Adult albino EOMs display an increased proportion of slow myofibers, larger slow myofibers, and a decreased density of NMJs—similar to human nystagmus patients. The percentage of NMJs on slow myofibers is also lower in albino animals. The initial innervation pattern of the incoming ocular motor neurons is normal in E13.5 albino embryos. Differences in the proportion of slow and fast myofiber subtypes are present as early as P14, and a lower percentage of NMJs on slow myofibers is present by P21. There is a lower density of NMJs on albino EOMs as early as P10, prior to eye opening. Conclusions Changes in NMJ development observed before eye opening indicate that nystagmus is not solely secondary to poor vision.
Collapse
Affiliation(s)
- Sampath Kumar Vemula
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Seoyoung A Kim
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Tapiwa Muvavarirwa
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|