1
|
Achi P, Christensen P, Iglesias V, McCarthy C, Pena R, Bavier L, Goldy C, Agrawal AA, Groen SC, Dillman AR. Entomopathogenic Nematode Species Vary in Their Behavior and Virulence in Response to Cardiac Glycosides Within and Around Insect Hosts. J Chem Ecol 2025; 51:12. [PMID: 39869279 PMCID: PMC11772503 DOI: 10.1007/s10886-025-01563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025]
Abstract
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system. We focus on toxic cardiac glycosides (CGs) from milkweeds (Asclepias spp.), which inhibit animal Na+/K+-ATPases, and two CG-resistant insects, the large milkweed bug Oncopeltus fasciatus and a CRISPR-edited Drosophila melanogaster. Both have CG-resistant Na+/K+-ATPases through a set of key amino acid substitutions, which facilitate CG sequestration. We conducted infection experiments with entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae, and S. hermaphroditum) as natural enemies on host insects containing mixtures of milkweed-derived CGs or purified CGs (ouabain, digoxin, and digitoxin) that vary in toxicity. The nematode S. carpocapsae is known to occur in soil near milkweed plants and naturally has several of the same Na+/K+-ATPase substitutions as the milkweed bug O. fasciatus and our Drosophila mutant. This nematode not only exhibited higher fecundity in hosts that carried CGs relative to the other nematode species (which have sensitive Na+/K+-ATPases), but also showed attraction to mixtures of CGs in milkweed root extracts and to purified ouabain when tested on agar plates. A coiling phenotype, which is a symptom of neurotoxicity, was observed more frequently in S. feltiae and S. hermaphroditum upon exposure to milkweed root extracts than in S. carpocapsae. Nematode behavior was further tested in sand, and while attraction to CGs was found for S. carpocapsae, nematodes of the other species tended to migrate away from milkweed root chemicals. Thus, S. carpocapsae can tolerate CGs and may use these as chemical cues to locate insect hosts that live on or around milkweed plants.
Collapse
Affiliation(s)
- Perla Achi
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Preston Christensen
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Victoria Iglesias
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Cullen McCarthy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Robert Pena
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Lanie Bavier
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Connor Goldy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, CA, USA.
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Rubiano-Buitrago P, White RA, Hastings AP, Schroeder FC, Agrawal AA, Duplais C. Cardenolides in Asclepias syriaca Seeds: Exploring the Legacy of Tadeus Reichstein. JOURNAL OF NATURAL PRODUCTS 2025; 88:49-57. [PMID: 39691066 DOI: 10.1021/acs.jnatprod.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The common milkweed Asclepias syriaca is widespread in North America and produces cardenolide toxins that deter herbivores by targeting the transmembrane enzyme Na+/K+-ATPase. In 1979, Nobel Laureate Tadeus Reichstein elucidated the structure of novel cardenolides isolated from A. syriaca roots and proposed structures for several other cardenolides that could not be confirmed. In this study, we investigate the cardenolide composition of A. syriaca seeds, focusing on their abundance and in vitro inhibitory potency on the sensitive porcine Na+/K+-ATPase and that of the highly resistant large milkweed bug, Oncopeltus fasciatus. We identify five previously unreported cardenolides (1-5), three of which are predominantly found in seeds, in addition to the known syrioside (6), aspecioside (7), and the 2-thiazoline ring-containing cardenolide labriformin (8). Glucopyranosyl-allomethylosyl-12-deoxy aspecioside (5) is distinguished by lack of oxidation at C-12, and compounds 2, 3, 6, and 8 contain a rare 1,4-dioxane motif. Inhibitory efficacy of the isolated cardenolides for sensitive and resistant enzymes appears to be correlated. Finally, we confirmed the structure of compound 2, originally proposed by Tadeus Reichstein, and are pleased to share his original 1979 handwritten manuscript.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850, United States
| | - Ronald A White
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850, United States
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Entomology, Cornell University, Ithaca, New York 14850, United States
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York 14456, United States
| |
Collapse
|
3
|
López-Goldar X, Zhang X, Hastings AP, Duplais C, Agrawal AA. Plant chemical diversity enhances defense against herbivory. Proc Natl Acad Sci U S A 2024; 121:e2417524121. [PMID: 39661060 DOI: 10.1073/pnas.2417524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores. Accordingly, we first outline nonexclusive mechanisms by which phytochemical diversity may increase toxicity of a mixture compared to the average effect of each compound alone. We then leveraged independent in vitro, in vivo transgenic, and organismal experiments to test the effect of equimolar concentrations of purified milkweed toxins in isolation vs. mixtures on the specialist and sequestering monarch butterfly. We show that cardenolide toxin mixtures from milkweed plants enhance resistance against this herbivore compared to equal concentrations of single compounds. In mixtures, highly potent toxins dominated the inhibition of the monarch's target enzyme (Na+/K+-ATPase) in vitro, revealing toxin-specific affinity for the adapted enzyme in the absence of other physiological adaptations of the monarch. Mixtures also caused increased mortality in CRISPR-edited adult Drosophila melanogaster with the monarch enzyme in vivo, whereas wild-type flies showed lower survival regardless of mixture type. Finally, although experimentally administered mixtures were not more toxic to monarch caterpillars than single compounds overall, increasing caterpillar sequestration from mixtures resulted in an increasing burden for growth compared to single compounds. Phytochemical diversity likely provides an economical plant defense by acting on multiple aspects of herbivore physiology and may be particularly effective against sequestering specialist herbivores.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
- Department of Entomology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
López-Goldar X, Mollema A, Sivak-Schwennesen C, Havko N, Howe G, Agrawal AA, Wetzel WC. Heat waves induce milkweed resistance to a specialist herbivore via increased toxicity and reduced nutrient content. PLANT, CELL & ENVIRONMENT 2024; 47:4530-4542. [PMID: 39011992 DOI: 10.1111/pce.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Over the last decade, a large effort has been made to understand how extreme climate events disrupt species interactions. Yet, it is unclear how these events affect plants and herbivores directly, via metabolic changes, and indirectly, via their subsequent altered interaction. We exposed common milkweed (Asclepias syriaca) and monarch caterpillars (Danaus plexippus) to control (26:14°C, day:night) or heat wave (HW) conditions (36:24°C, day:night) for 4 days and then moved each organism to a new control or HW partner to disentangle the direct and indirect effects of heat exposure on each organism. We found that the HW directly benefited plants in terms of growth and defence expression (increased latex exudation and total cardenolides) and insect her'bivores through faster larval development. Conversely, indirect HW effects caused both plant latex and total cardenolides to decrease after subsequent herbivory. Nonetheless, increasing trends of more toxic cardenolides and lower leaf nutritional quality after herbivory by HW caterpillars likely led to reduced plant damage compared to controls. Our findings reveal that indirect impacts of HWs may play a greater role in shaping plant-herbivore interactions via changes in key physiological traits, providing valuable understanding of how ecological interactions may proceed in a changing world.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Alyssa Mollema
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | | | - Nathan Havko
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Gregg Howe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - William C Wetzel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Ziemke T, Wang P, Duplais C. The fate of a Solanum steroidal alkaloid toxin in the cabbage looper (Trichoplusia ni). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104205. [PMID: 39454684 DOI: 10.1016/j.ibmb.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Plants produce complex chemical defenses against herbivores, resulting in the emergence of detoxification strategies in phytophagous insects. While enzymatic detoxification and target site mutagenesis are well-documented, the quantitative contribution of excretion remains less studied. We focus on the cabbage looper (Trichoplusia ni), a generalist herbivore, to elucidate the detoxification of a steroidal alkaloid, solanidine, produced in potato (Solanum tuberosum). Through larval feeding experiments and chemical analysis of metabolites using high-resolution mass spectrometry, we identify solanidine 3-O-β-glucopyranoside and solanidine 3-phosphate as major metabolization products of solanidine. Glycosylation and phosphorylation reactions have not previously been observed in cabbage looper. Modified solanidine derivatives exhibit reduced lipophilicity, preventing passive transport as predicted by physicochemical analyses, and only solanidine was detected in body tissue. In addition, the metabolism of solanidine in a T. ni mutant strain with midgut cadherin protein knocked out was also investigated to examine the potential role of the cadherin, an important receptor for Bt toxins, in steroidal alkaloid detoxification. T. ni cadherin-knockout strain showed lower solanidine conversion (33.9% ± 2.2) and uptake (27.41 ± 0.49 nmol/g) compared to the wild-type strain (51.3% ± 4.1, 33.66 ± 2.48 nmol/g) but similar excretion kinetics. Although solanidine negatively impacted the feeding performance of both strains the cadherin-knockout does not affect the feeding performance. Our study expands the metabolization enzyme repertoire in cabbage loopers, emphasizing the complexity of detoxification mechanisms in generalist herbivores.
Collapse
Affiliation(s)
- Tobias Ziemke
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Ping Wang
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA.
| |
Collapse
|
6
|
Röpcke M, Lu S, Plate C, Meinzer F, Lisiecki A, Dobler S. Substrate Specificity of ABCB Transporters Predicted by Docking Simulations Can Be Confirmed by Experimental Tests. Molecules 2024; 29:5272. [PMID: 39598661 PMCID: PMC11596062 DOI: 10.3390/molecules29225272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, particularly those of subfamily B, are involved in cell detoxification, multidrug resistance, drug treatment pharmacodynamics, and also ecological adaptation. In this regard, ABCB transporters may play a decisive role in the co-evolution between plants and herbivores. Cardenolides, toxic steroid glycosides, are secondary plant metabolites that defend plants against herbivores by targeting their sodium-potassium ATPase. Despite their toxicity, several herbivorous insects such as the large milkweed bug (Oncopeltus fasciatus) have evolved adaptations to tolerate cardenolides and sequester them for their own defense. We investigate the role of two ABCB transporters of O. fasciatus for the paracellular transport of cardenolides by docking simulations and ATPase assays. Cardenolide binding of OfABCB1 and OfABCB2 is predicted by docking simulations and calculated binding energies are compared with substrate specificities determined in ATPase assays. Both tested ABCB transporters showed activity upon exposure to cardenolides and Km values that agreed well with the predictions of our docking simulations. We conclude that docking simulations can help identify transporter binding regions and predict substrate specificity, as well as provide deeper insights into the structural basis of ABC transporter function.
Collapse
Affiliation(s)
- Mario Röpcke
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| | | | | | | | | | - Susanne Dobler
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| |
Collapse
|
7
|
Agrawal AA, Hastings AP, Duplais C. Potent Nitrogen-containing Milkweed Toxins are Differentially Regulated by Soil Nitrogen and Herbivore-induced Defense. J Chem Ecol 2024; 50:725-737. [PMID: 39467962 DOI: 10.1007/s10886-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
Theories have been widely proposed and tested for impacts of soil nitrogen (N) on phytochemical defenses. Among the hundreds of distinct cardenolide toxins produced by milkweeds (Asclepias spp.), few contain N, yet these appear to be the most toxic against specialist herbivores. Because N- and non-N-cardenolides coexist in milkweed leaves and likely have distinct biosynthesis, they present an opportunity to address hypotheses about drivers of toxin expression. We tested effects of soil N and herbivore-damage on cardenolide profiles of two milkweed species differing in life-history strategies (Asclepias syriaca and A. curassavica), and the toxicity of their leaves. In particular leaf extracts were tested against the target enzymes (Na+/K+-ATPase extracted from neural tissue) from both monarch butterflies (Danaus plexippus) as well as less cardenolide-resistant queen butterflies, D. gilippus. Increasing soil N enhanced biomass of Asclepias syriaca but had weak effects on cardenolides, including causing a significant reduction in the N-cardenolide labriformin; feeding by monarch caterpillars strongly induced N-cardenolides (labriformin), its precursors, and total cardenolides. Conversely, soil N had little impact on A. curassavica biomass, but was the primary driver of increasing N-cardenolides (voruscharin, uscharin and their precursors); caterpillar induction was weak. Butterfly enzyme assays revealed damage-induced cardenolides substantially increased toxicity of both milkweeds to both butterflies, swamping out effects of soil N on cardenolide concentration and composition. Although these two milkweed species differentially responded to soil N with allocation to growth and specific cardenolides, leaf toxicity to butterfly Na+/K+-ATPases was primarily driven by herbivore-induced defense. Thus, both biotic and abiotic factors shape the composition of phytochemical defense expression, and their relative importance may be dictated by plant life-history differences.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| |
Collapse
|
8
|
Agrawal AA, Hastings AP, Lenhart PA, Blecher M, Duplais C, Petschenka G, Hawlena D, Wagschal V, Dobler S. Convergence and Divergence among Herbivorous Insects Specialized on Toxic Plants: Revealing Syndromes among the Cardenolide Feeders across the Insect Tree of Life. Am Nat 2024; 204:201-220. [PMID: 39179235 DOI: 10.1086/731277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.
Collapse
|
9
|
Beran F, Heckel DG. Escalation by duplication: Milkweed bug trumps Monarch butterfly. Mol Ecol 2024; 33:e17443. [PMID: 38943372 DOI: 10.1111/mec.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The iconic Monarch butterfly is probably the best-known example of chemical defence against predation, as pictures of vomiting naive blue jays in countless textbooks vividly illustrate. Larvae of the butterfly take up toxic cardiac glycosides from their milkweed hostplants and carry them over to the adult stage. These compounds (cardiotonic steroids, including cardenolides and bufadienolides) inhibit the animal transmembrane sodium-potassium ATPase (Na,K-ATPase), but the Monarch enzyme resists this inhibition thanks to amino acid substitutions in its catalytic alpha-subunit. Some birds also have substitutions and can feast on cardiac glycoside-sequestering insects with impunity. A flurry of recent work has shown how the alpha-subunit gene has been duplicated multiple times in separate insect lineages specializing in cardiac glycoside-producing plants. In this issue of Molecular Ecology, Herbertz et al. toss the beta-subunit into the mix, by expressing all nine combinations of three alpha- and three beta-subunits of the milkweed bug Na,K-ATPase and testing their response to a cardenolide from the hostplant. The findings suggest that the diversification and subfunctionalization of genes allow milkweed bugs to balance trade-offs between resistance towards sequestered host plant toxins that protect the bugs from predators, and physiological costs in terms of Na,K-ATPase activity.
Collapse
Affiliation(s)
- Franziska Beran
- Population Ecology Group, Friedrich-Schiller Universität Jena, Jena, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Emeritus Group Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Herbertz M, Dalla S, Wagschal V, Turjalei R, Heiser M, Dobler S. Coevolutionary escalation led to differentially adapted paralogs of an insect's Na,K-ATPase optimizing resistance to host plant toxins. Mol Ecol 2024; 33:e17041. [PMID: 37296537 DOI: 10.1111/mec.17041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cardiac glycosides are chemical defence toxins known to fatally inhibit the Na,K-ATPase (NKA) throughout the animal kingdom. Several animals, however, have evolved target-site insensitivity through substitutions in the otherwise highly conserved cardiac glycoside binding pocket of the NKA. The large milkweed bug, Oncopeltus fasciatus, shares a long evolutionary history with cardiac glycoside containing plants that led to intricate adaptations. Most strikingly, several duplications of the bugs' NKA1α gene provided the opportunity for differential resistance-conferring substitutions and subsequent sub-functionalization of the enzymes. Here, we analysed cardiac glycoside resistance and ion pumping activity of nine functional NKA α/β-combinations of O. fasciatus expressed in cell culture. We tested the enzymes with two structurally distinct cardiac glycosides, calotropin, a host plant compound, and ouabain, a standard cardiac glycoside. The identity and number of known resistance-conferring substitutions in the cardiac glycoside binding site significantly impacted activity and toxin resistance in the three α-subunits. The β-subunits also influenced the enzymes' characteristics, yet to a lesser extent. Enzymes containing the more ancient αC-subunit were inhibited by both compounds but much more strongly by the host plant toxin calotropin than by ouabain. The sensitivity to calotropin was diminished in enzymes containing the more derived αB and αA, which were only marginally inhibited by both cardiac glycosides. This trend culminated in αAβ1 having higher resistance against calotropin than against ouabain. These results support the coevolutionary escalation of plant defences and herbivore tolerance mechanisms. The possession of multiple paralogs additionally mitigates pleiotropic effects by compromising between ion pumping activity and resistance.
Collapse
Affiliation(s)
- Marlena Herbertz
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Safaa Dalla
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Vera Wagschal
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Rohin Turjalei
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Marlies Heiser
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Susanne Dobler
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Rubiano-Buitrago P, Pradhan S, Aceves AA, Mohammadi S, Paetz C, Rowland HM. Cardenolides in the defensive fluid of adult large milkweed bugs have differential potency on vertebrate and invertebrate predator Na +/K +-ATPases. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231735. [PMID: 39100152 PMCID: PMC11296140 DOI: 10.1098/rsos.231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Aposematic animals rely on diverse secondary metabolites for defence. Various hypotheses, such as competition, life history and multifunctionality, have been posited to explain defence variability and diversity. We investigate the compound selectivity hypothesis using large milkweed bugs, Oncopeltus fasciatus, to determine if distinct cardenolides vary in toxicity to different predators. We quantify cardenolides in the bug's defensive secretions and body tissues and test the individual compounds against predator target sites, the Na+/K+-ATPases, that are predicted to differ in sensitivity. Frugoside, gofruside, glucopyranosyl frugoside and glucopyranosyl gofruside were the dominant cardenolides in the body tissues of the insects, whereas the two monoglycosidic cardenolides-frugoside and gofruside-were the most abundant in the defensive fluid. These monoglycosidic cardenolides were highly toxic (IC50 < 1 μM) to an invertebrate and a sensitive vertebrate enzyme, in comparison to the glucosylated compounds. Gofruside was the weakest inhibitor for a putatively resistant vertebrate predator. Glucopyranosyl calotropin, found in only 60% of bugs, was also an effective inhibitor of sensitive vertebrate enzymes. Our results suggest that the compounds sequestered by O. fasciatus probably provide consistency in protection against a range of predators and underscore the need to consider predator communities in prey defence evolution.
Collapse
Affiliation(s)
- P. Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A. A. Aceves
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Mohammadi
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C. Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - H. M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
12
|
Agrawal AA, Hastings AP, Duplais C. Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others. Ecol Lett 2024; 27:e14340. [PMID: 38017619 DOI: 10.1111/ele.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York, USA
| |
Collapse
|
13
|
López-Goldar X, Agrawal AA. Tissue and toxin-specific divergent evolution in plant defense Evolución divergente específica de tejido y toxina en defensa de plantas. Evolution 2023; 77:2431-2441. [PMID: 37656826 DOI: 10.1093/evolut/qpad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
A major predicted constraint on the evolution of anti-herbivore defense in plants is the nonindependent expression of traits mediating resistance. Since herbivore attack can be highly variable across plant tissues, we hypothesized that correlations in toxin expression within and between plant tissues may limit population differentiation and, thus, plant adaptation. Using full-sib families from two nearby (<1 km) common milkweed (Asclepias syriaca) populations, we investigated genetic correlations among 28 distinct cardenolide toxins within and between roots, leaves, and seeds and examined signatures of tissue-specific divergent selection between populations by QST-FST comparisons. The prevalence, direction, and strength of genetic correlations among cardenolides were tissue specific, and concentrations of individual cardenolides were moderately correlated between tissues; nonetheless, the direction and strength of correlations were population specific. Population divergence in the cardenolide chemistry was stronger in roots than in leaves and seeds. Divergent selection on individual cardenolides was tissue and toxin specific, except for a single highly toxic cardenolide (labriformin), that showed divergent selection across all plant tissues. Heterogeneous evolution of cardenolides within and between tissues across populations appears possible due to their highly independent expression. This independence may be common in nature, especially in specialized interactions in which distinct herbivores feed on different plant tissues.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Carlson NJ, Agrawal AA. A nutrition-defence trade-off drives diet choice in a toxic plant generalist. Proc Biol Sci 2023; 290:20230987. [PMID: 37554038 PMCID: PMC10410223 DOI: 10.1098/rspb.2023.0987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Plant toxicity shapes the dietary choices of herbivores. Especially when herbivores sequester plant toxins, they may experience a trade-off between gaining protection from natural enemies and avoiding toxicity. The availability of toxins for sequestration may additionally trade off with the nutritional quality of a potential food source for sequestering herbivores. We hypothesized that diet mixing might allow a sequestering herbivore to balance nutrition and defence (via sequestration of plant toxins). Accordingly, here we address diet mixing and sequestration of large milkweed bugs (Oncopeltus fasciatus) when they have differential access to toxins (cardenolides) in their diet. In the absence of toxins from a preferred food (milkweed seeds), large milkweed bugs fed on nutritionally adequate non-toxic seeds, but supplemented their diet by feeding on nutritionally poor, but cardenolide-rich milkweed leaf and stem tissues. This dietary shift corresponded to reduced insect growth but facilitated sequestration of defensive toxins. Plant production of cardenolides was also substantially induced by bug feeding on leaf and stem tissues, perhaps benefitting this cardenolide-resistant herbivore. Thus, sequestration appears to drive diet mixing in this toxic plant generalist, even at the cost of feeding on nutritionally poor plant tissue.
Collapse
Affiliation(s)
- Nathaniel J. Carlson
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Jones PL, Martin KR, Prachand SV, Hastings AP, Duplais C, Agrawal AA. Compound-Specific Behavioral and Enzymatic Resistance to Toxic Milkweed Cardenolides in a Generalist Bumblebee Pollinator. J Chem Ecol 2023; 49:418-427. [PMID: 36745328 DOI: 10.1007/s10886-023-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.
Collapse
Affiliation(s)
| | - Kyle R Martin
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | - Amy P Hastings
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, USA
| | - Anurag A Agrawal
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, USA
| |
Collapse
|
16
|
de Melo Teles E Gomes IJ, Neves MO, Paolucci LN. Trees harbouring ants are better defended than con-generic and sympatric ant-free trees. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:31. [PMID: 37389663 DOI: 10.1007/s00114-023-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Plant strategies against herbivores are classically divided into chemical, physical, biotic defences. However, little is known about the relative importance of each type of plant defence, especially in the same species. Using the myrmecophyte Triplaris americana (both with and without ants), and the congeneric non-myrmecophyte T. gardneriana, we tested whether ant defence is more effective than other defences of naturally ant-free myrmecophytes and the non-myrmecophyte congeneric species, all spatially co-occurring. In addition, we investigated how plant traits vary among plant groups, and how these traits modulate herbivory. We sampled data on leaf area loss and plant traits from these tree groups in the Brazilian Pantanal floodplain, and found that herbivory is sixfold lower in plants with ants than in ant-free plants, supporting a major role of biotic defences against herbivory. Whereas ant-free plants had more physical defences (sclerophylly and trichomes), they had little effect on herbivory-only sclerophylly modulated herbivory, but with opposite effects depending on ants' presence and species identity. Despite little variation in the chemicals among plant groups, tannin concentrations and δ13C signatures negatively affected herbivory in T. americana plants with ants and in T. gardneriana, respectively. We showed that ant defence in myrmecophytic systems is the most effective against herbivory, as the studied plants could not fully compensate the lack of this biotic defence. We highlight the importance of positive insect-plant interactions in limiting herbivory, and therefore potentially plant fitness.
Collapse
Affiliation(s)
- Inácio José de Melo Teles E Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- Programa de Pós-Graduação Em Ecologia, Conservação E Manejo da Fauna Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Programa de Pós-Graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Matheus Oliveira Neves
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso. Cuiabá, Cuiabá, MT, 78060-900, Brazil
| | - Lucas Navarro Paolucci
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
17
|
Espinosa Del Alba L, Petschenka G. No physiological costs of dual sequestration of chemically different plant toxins in the milkweed bug Spilostethus saxatilis (Heteroptera: Lygaeidae). JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104508. [PMID: 37011856 DOI: 10.1016/j.jinsphys.2023.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023]
Abstract
Many herbivorous insects not only cope with plant toxins but also sequester them as a defense against predators and parasitoids. Sequestration is a product of the evolutionary arms race between plants and herbivorous insects and has been hypothesized to incur physiological costs due to specific adaptations required. Contradictory evidence about these costs exists for insects sequestering only one class of toxin, but very little is known about the physiological implications for species sequestering structurally different classes of compounds. Spilostethus saxatilis is a milkweed bug belonging to the cardenolide-sequestering heteropteran subfamily Lygaeinae (Heteroptera: Lygaeidae) that has shifted to the colchicine-containing plant Colchicum autumnale, a resource of chemically unrelated alkaloids. Using feeding-assays on artificial diet and chemical analysis, we assessed whether S. saxatilis is still able to sequester cardenolides apart from colchicine and related metabolites (colchicoids), and tested the effect of (1) either a natural cardenolide concentration (using ouabain as a model compound) or a natural colchicine concentration, (2) an increased concentration of both toxins, and (3) seeds of either Asclepias syriaca (cardenolides) or C. autumnale (colchicoids) on a set of life-history traits. For comparison, we assessed the same life-history traits in the milkweed bug Oncopeltus fasciatus exposed to cardenolides only. Although cardenolides and colchicoids have different physiological targets (Na+/K+-ATPase vs tubulin) and thus require different resistance traits, chronic exposure and sequestration of both isolated toxins caused no physiological costs such as reduced growth, increased mortality, lower fertility, or shorter adult life span in S. saxatilis. Indeed, an increased performance was observed in O. fasciatus and an according trend was found in S. saxatilis when feeding on isolated ouabain and isolated colchicine, respectively. Positive effects were even more pronounced when insects were provided with natural toxic seeds (i.e. C. autumnale for S. saxatilis and A. syriaca for O. fasciatus), especially in O. fasciatus. Our findings suggest, that S. saxatilis can sequester two chemically unrelated classes of plant compounds at a cost-free level, and that colchicoids may even play a beneficial role in terms of fertility.
Collapse
Affiliation(s)
- Laura Espinosa Del Alba
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Otto-Sander Straße 5, 70599 Stuttgart, Germany
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Otto-Sander Straße 5, 70599 Stuttgart, Germany.
| |
Collapse
|
18
|
Agrawal AA, Hastings AP. Tissue-specific plant toxins and adaptation in a specialist root herbivore. Proc Natl Acad Sci U S A 2023; 120:e2302251120. [PMID: 37216531 PMCID: PMC10235950 DOI: 10.1073/pnas.2302251120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.
Collapse
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
- Department of Entomology, Cornell University, Ithaca, NY14853
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
19
|
Heyworth HC, Pokharel P, Blount JD, Mitchell C, Petschenka G, Rowland HM. Antioxidant availability trades off with warning signals and toxin sequestration in the large milkweed bug ( Oncopeltus fasciatus). Ecol Evol 2023; 13:e9971. [PMID: 37038513 PMCID: PMC10082154 DOI: 10.1002/ece3.9971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
In some aposematic species the conspicuousness of an individual's warning signal and the concentration of its chemical defense are positively correlated. Several mechanisms have been proposed to explain this phenomenon, including resource allocation trade-offs where the same limiting resource is needed to produce both the warning signal and chemical defense. Here, the large milkweed bug (Oncopeltus fasciatus: Heteroptera, Lygaeinae) was used to test whether allocation of antioxidants, that can impart color, trade against their availability to prevent self-damage caused by toxin sequestration. We investigated if (i) the sequestration of cardenolides is associated with costs in the form of changes in oxidative state; and (ii) oxidative state can affect the capacity of individuals to produce warning signals. We reared milkweed bugs on artificial diets with increasing quantities of cardenolides and examined how this affected signal quality (brightness and chroma) across different instars. We then related the expression of warning colors to the quantity of sequestered cardenolides and indicators of oxidative state-oxidative lipid damage (malondialdehyde), and two antioxidants: total superoxide dismutase and total glutathione. Bugs that sequestered more cardenolides had significantly lower levels of the antioxidant glutathione, and bugs with less total glutathione had less luminant orange warning signals and reduced chroma of their black patches compared to bugs with more glutathione. Bugs that sequestered more cardenolides also had reduced red-green chroma of their black patches that was unrelated to oxidative state. Our results give tentative support for a physiological cost of sequestration in milkweed bugs and a mechanistic link between antioxidant availability, sequestration, and warning signals.
Collapse
Affiliation(s)
- H. Cecilia Heyworth
- Predators and Toxic Prey Research GroupMax Planck Institute for Chemical EcologyJenaGermany
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Christopher Mitchell
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Georg Petschenka
- Department of Applied Entomology, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Hannah M. Rowland
- Predators and Toxic Prey Research GroupMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
20
|
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2022; 28:molecules28010105. [PMID: 36615300 PMCID: PMC9822358 DOI: 10.3390/molecules28010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-β-allopyranosyl coroglaucigenin (1), 3-[4'-O-β-glucopyranosyl-β-allopyranosyl] coroglaucigenin (2), 3'-O-β-glucopyranosyl-15-β-hydroxycalotropin (3), and 3-O-β-glucopyranosyl-12-β-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-β-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| | - Shrikant Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| |
Collapse
|
21
|
Profile of Anurag A. Agrawal. Proc Natl Acad Sci U S A 2022; 119:e2208946119. [PMID: 35763572 PMCID: PMC9271207 DOI: 10.1073/pnas.2208946119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|