1
|
Xu Y, Liu H, Liu H, Lin D, Wu S, Peng Z. Brain Network Abnormalities in Obsessive-Compulsive Disorder: Insights from Edge Functional Connectivity Analysis. Behav Sci (Basel) 2025; 15:488. [PMID: 40282109 PMCID: PMC12024440 DOI: 10.3390/bs15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Functional differences in key brain networks, including the dorsal attention network (DAN), control network (CN), and default mode network (DMN), have been identified in individuals with obsessive-compulsive disorder (OCD). However, the precise nature of these differences remains unclear. In this study, we further explored these differences and validated previous findings using a novel edge functional connectivity (eFC) approach, which enables a more refined analysis of brain network interaction. By employing this advanced method, we sought to gain deeper insights into FC alterations that may underlie the pathology of OCD. We collected data during movie watching from 44 patients with OCD and 33 healthy controls (HCs). The two-sample t test was used to assess differences in entropy between the DAN, CN, and DMN between groups. The analysis was performed with control for potentially confounding variables to ensure the robustness of the findings. Significant differences in network entropy were found between the OCD and HC groups. Relative to HCs, patients with OCD showed significantly reduced entropy in the DAN and increased entropy in the CN and DMN. The decreased entropy in the DAN and increased entropy in the CN and DMN observed in this study may be related to the core symptoms of OCD, such as attention deficit, impaired cognitive control, and self-referential thinking. These results provide valuable insights into the neurobiological mechanisms of OCD and highlight the potential of network entropy as a biomarker for the disorder. Future research should further explore the relationship between these network changes and the severity of OCD symptoms, as well as assess their implications for the development of treatment strategies.
Collapse
Affiliation(s)
- Yongwang Xu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Hongfei Liu
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Haiyan Liu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Defeng Lin
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Sipeng Wu
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou 510631, China;
| | - Ziwen Peng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| |
Collapse
|
2
|
Makkeh A, Graetz M, Schneider AC, Ehrlich DA, Priesemann V, Wibral M. A general framework for interpretable neural learning based on local information-theoretic goal functions. Proc Natl Acad Sci U S A 2025; 122:e2408125122. [PMID: 40042906 PMCID: PMC11912414 DOI: 10.1073/pnas.2408125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025] Open
Abstract
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more local scale indeed lead to valuable insights, however, a general constructive approach to describe local learning goals that is both interpretable and adaptable across diverse tasks is still missing. We have previously formulated a local information processing goal that is highly adaptable and interpretable for a model neuron with compartmental structure. Building on recent advances in Partial Information Decomposition (PID), we here derive a corresponding parametric local learning rule, which allows us to introduce "infomorphic" neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised, and memory learning. By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
Collapse
Affiliation(s)
- Abdullah Makkeh
- Department of Data-driven Analysis of Biological Networks, Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen 37077, Germany
- Complex Systems Theory, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Marcel Graetz
- Department of Data-driven Analysis of Biological Networks, Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen 37077, Germany
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8092, Switzerland
| | - Andreas C Schneider
- Complex Systems Theory, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- University of Göttingen, Göttingen 37073, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37073, Germany
| | - David A Ehrlich
- Department of Data-driven Analysis of Biological Networks, Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen 37077, Germany
- Complex Systems Theory, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Viola Priesemann
- Complex Systems Theory, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- University of Göttingen, Göttingen 37073, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37073, Germany
| | - Michael Wibral
- Department of Data-driven Analysis of Biological Networks, Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
3
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
4
|
Choi K, Cho Y, Chae Y, Cheon SY. Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit. Life Sci 2025; 363:123413. [PMID: 39863020 DOI: 10.1016/j.lfs.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE. However, not all patients can receive liver transplantation. Moreover, patients who have received liver transplantation have limitations in that they are vulnerable to hepatocellular carcinoma, allograft rejection, and infection. To find other therapeutic strategies, it is important to understand pathological factors and mechanisms that lead to HE after liver disease. Oxidative stress, inflammatory response, hyperammonaemia and metabolic disorders seen after liver diseases have been reported as risk factors of HE. These are known to affect the brain and cause HE. These peripheral pathological factors can impair the blood-brain barrier, cause it to collapse and damage the neurovascular unit component of multiple cells, including vascular endothelial cells, astrocytes, microglia, and neurons, leading to HE. Many previous studies on HE have suggested the impairment of neurovascular unit and cell-cell communication in the pathogenesis of HE. This review focuses on pathological factors that appear in HE, cell type-specific pathological mechanisms, miscommunication/incorrect relationships, and therapeutic candidates between brain cells in HE. This review suggests that regulating communications and interactions between cells may be important in overcoming HE.
Collapse
Affiliation(s)
- Kyuwan Choi
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yena Cho
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yerin Chae
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea.
| |
Collapse
|
5
|
Candelori B, Bardella G, Spinelli I, Ramawat S, Pani P, Ferraina S, Scardapane S. Spatio-temporal transformers for decoding neural movement control. J Neural Eng 2025; 22:016023. [PMID: 39870043 DOI: 10.1088/1741-2552/adaef0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activityin vivoremains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.Approach. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.Main results. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.Significance. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.
Collapse
Affiliation(s)
- Benedetta Candelori
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Indro Spinelli
- Department of Computer Science, Sapienza University of Rome, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Simone Scardapane
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Neri M, Brovelli A, Castro S, Fraisopi F, Gatica M, Herzog R, Mediano PAM, Mindlin I, Petri G, Bor D, Rosas FE, Tramacere A, Estarellas M. A Taxonomy of Neuroscientific Strategies Based on Interaction Orders. Eur J Neurosci 2025; 61:e16676. [PMID: 39906974 DOI: 10.1111/ejn.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.
Collapse
Affiliation(s)
- Matteo Neri
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Samy Castro
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
- Institut de Neurosciences Des Systèmes (INS), Aix-Marseille Université, UMR 1106, Marseille, France
| | - Fausto Fraisopi
- Institute for Advanced Study, Aix-Marseille University, Marseille, France
| | - Marilyn Gatica
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - Ruben Herzog
- DreamTeam, Paris Brain Institute (ICM), Paris, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ivan Mindlin
- DreamTeam, Paris Brain Institute (ICM), Paris, France
- PICNIC lab, Paris Brain Institute (ICM), Paris, France
| | - Giovanni Petri
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- NPLab, CENTAI Institute, Turin, Italy
| | - Daniel Bor
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Sussex Centre for Consciousness Science and Sussex AI, Department of Informatics, University of Sussex, Brighton, UK
- Center for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS), Prague, Czechia
| | - Antonella Tramacere
- Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Mar Estarellas
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Cofré R, Destexhe A. Entropy and Complexity Tools Across Scales in Neuroscience: A Review. ENTROPY (BASEL, SWITZERLAND) 2025; 27:115. [PMID: 40003111 PMCID: PMC11854896 DOI: 10.3390/e27020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Understanding the brain's intricate dynamics across multiple scales-from cellular interactions to large-scale brain behavior-remains one of the most significant challenges in modern neuroscience. Two key concepts, entropy and complexity, have been increasingly employed by neuroscientists as powerful tools for characterizing the interplay between structure and function in the brain across scales. The flexibility of these two concepts enables researchers to explore quantitatively how the brain processes information, adapts to changing environments, and maintains a delicate balance between order and disorder. This review illustrates the main tools and ideas to study neural phenomena using these concepts. This review does not delve into the specific methods or analyses of each study. Instead, it aims to offer a broad overview of how these tools are applied within the neuroscientific community and how they are transforming our understanding of the brain. We focus on their applications across scales, discuss the strengths and limitations of different metrics, and examine their practical applications and theoretical significance.
Collapse
Affiliation(s)
- Rodrigo Cofré
- Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, 91400 Saclay, France;
| | | |
Collapse
|
8
|
Kotler S, Parvizi-Wayne D, Mannino M, Friston K. Flow and intuition: a systems neuroscience comparison. Neurosci Conscious 2025; 2025:niae040. [PMID: 39777155 PMCID: PMC11700884 DOI: 10.1093/nc/niae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
This paper explores the relationship between intuition and flow from a neurodynamics perspective. Flow and intuition represent two cognitive phenomena rooted in nonconscious information processing; however, there are clear differences in both their phenomenal characteristics and, more broadly, their contribution to action and cognition. We propose, extrapolating from dual processing theory, that intuition serves as a rapid, nonconscious decision-making process, while flow facilitates this process in action, achieving optimal cognitive control and performance without [conscious] deliberation. By exploring these points of convergence between flow and intuition, we also attempt to reconcile the apparent paradox of the presence of enhanced intuition in flow, which is also a state of heightened cognitive control. To do so, we utilize a revised dual-processing framework, which allows us to productively align and differentiate flow and intuition (including intuition in flow). Furthermore, we draw on recent work examining flow from an active inference perspective. Our account not only heightens understanding of human cognition and consciousness, but also raises new questions for future research, aiming to deepen our comprehension of how flow and intuition can be harnessed to elevate human performance and wellbeing.
Collapse
Affiliation(s)
| | - Darius Parvizi-Wayne
- Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
| | - Michael Mannino
- Flow Research Collective, Gardnerville, Nevada, USA
- Artifical Intelligence Center, Miami Dade College, Miami, Florida, USA
| | - Karl Friston
- VERSES AI Research Lab, Los Angeles, CA, United States
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Varley TF, Havert D, Fosque L, Alipour A, Weerawongphrom N, Naganobori H, O’Shea L, Pope M, Beggs J. The serotonergic psychedelic N,N-dipropyltryptamine alters information-processing dynamics in in vitro cortical neural circuits. Netw Neurosci 2024; 8:1421-1438. [PMID: 39735490 PMCID: PMC11674936 DOI: 10.1162/netn_a_00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/08/2024] [Indexed: 12/31/2024] Open
Abstract
Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats. Three hours of spontaneous activity were recorded: an hour of predrug control, an hour of exposure to 10-μM DPT solution, and a final hour of washout, once again under control conditions. We found that DPT reversibly alters information dynamics in multiple ways: First, the DPT condition was associated with a higher entropy of spontaneous firing activity and reduced the amount of time information was stored in individual neurons. Second, DPT also reduced the reversibility of neural activity, increasing the entropy produced and suggesting a drive away from equilibrium. Third, DPT altered the structure of neuronal circuits, decreasing the overall information flow coming into each neuron, but increasing the number of weak connections, creating a dynamic that combines elements of integration and disintegration. Finally, DPT decreased the higher order statistical synergy present in sets of three neurons. Collectively, these results paint a complex picture of how psychedelics regulate information processing in mesoscale neuronal networks in cortical tissue. Implications for existing hypotheses of psychedelic action, such as the entropic brain hypothesis, are discussed.
Collapse
Affiliation(s)
- Thomas F. Varley
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Daniel Havert
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Leandro Fosque
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | | | | | | | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
10
|
Santoro A, Battiston F, Lucas M, Petri G, Amico E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat Commun 2024; 15:10244. [PMID: 39592571 PMCID: PMC11599762 DOI: 10.1038/s41467-024-54472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Traditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data. To address this question, we conducted a comprehensive analysis using fMRI time series of 100 unrelated subjects from the Human Connectome Project. We show that higher-order approaches greatly enhance our ability to decode dynamically between various tasks, to improve the individual identification of unimodal and transmodal functional subsystems, and to strengthen significantly the associations between brain activity and behavior. Overall, our approach sheds new light on the higher-order organization of fMRI time series, improving the characterization of dynamic group dependencies in rest and tasks, and revealing a vast space of unexplored structures within human functional brain data, which may remain hidden when using traditional pairwise approaches.
Collapse
Affiliation(s)
- Andrea Santoro
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- CENTAI, Turin, Italy.
| | - Federico Battiston
- Department of Network and Data Science, Central European University, Vienna, Austria
| | - Maxime Lucas
- CENTAI, Turin, Italy
- Department of Mathematics & Namur Institute for Complex Systems (naXys), Université de Namur, Namur, Belgium
| | - Giovanni Petri
- CENTAI, Turin, Italy
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Enrico Amico
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Varley TF. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:883. [PMID: 39451959 PMCID: PMC11507062 DOI: 10.3390/e26100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
What does it mean for a complex system to "compute" or perform "computations"? Intuitively, we can understand complex "computation" as occurring when a system's state is a function of multiple inputs (potentially including its own past state). Here, we discuss how computational processes in complex systems can be generally studied using the concept of statistical synergy, which is information about an output that can only be learned when the joint state of all inputs is known. Building on prior work, we show that this approach naturally leads to a link between multivariate information theory and topics in causal inference, specifically, the phenomenon of causal colliders. We begin by showing how Berkson's paradox implies a higher-order, synergistic interaction between multidimensional inputs and outputs. We then discuss how causal structure learning can refine and orient analyses of synergies in empirical data, and when empirical synergies meaningfully reflect computation versus when they may be spurious. We end by proposing that this conceptual link between synergy, causal colliders, and computation can serve as a foundation on which to build a mathematically rich general theory of computation in complex systems.
Collapse
Affiliation(s)
- Thomas F Varley
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
12
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
13
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Combrisson E, Basanisi R, Gueguen MCM, Rheims S, Kahane P, Bastin J, Brovelli A. Neural interactions in the human frontal cortex dissociate reward and punishment learning. eLife 2024; 12:RP92938. [PMID: 38941238 PMCID: PMC11213568 DOI: 10.7554/elife.92938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
How human prefrontal and insular regions interact while maximizing rewards and minimizing punishments is unknown. Capitalizing on human intracranial recordings, we demonstrate that the functional specificity toward reward or punishment learning is better disentangled by interactions compared to local representations. Prefrontal and insular cortices display non-selective neural populations to rewards and punishments. Non-selective responses, however, give rise to context-specific interareal interactions. We identify a reward subsystem with redundant interactions between the orbitofrontal and ventromedial prefrontal cortices, with a driving role of the latter. In addition, we find a punishment subsystem with redundant interactions between the insular and dorsolateral cortices, with a driving role of the insula. Finally, switching between reward and punishment learning is mediated by synergistic interactions between the two subsystems. These results provide a unifying explanation of distributed cortical representations and interactions supporting reward and punishment learning.
Collapse
Affiliation(s)
- Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Maelle CM Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of LyonLyonFrance
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeurosciencesGrenobleFrance
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| |
Collapse
|
16
|
Koçillari L, Lorenz GM, Engel NM, Celotto M, Curreli S, Malerba SB, Engel AK, Fellin T, Panzeri S. Sampling bias corrections for accurate neural measures of redundant, unique, and synergistic information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597303. [PMID: 38895197 PMCID: PMC11185652 DOI: 10.1101/2024.06.04.597303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Shannon Information theory has long been a tool of choice to measure empirically how populations of neurons in the brain encode information about cognitive variables. Recently, Partial Information Decomposition (PID) has emerged as principled way to break down this information into components identifying not only the unique information carried by each neuron, but also whether relationships between neurons generate synergistic or redundant information. While it has been long recognized that Shannon information measures on neural activity suffer from a (mostly upward) limited sampling estimation bias, this issue has largely been ignored in the burgeoning field of PID analysis of neural activity. We used simulations to investigate the limited sampling bias of PID computed from discrete probabilities (suited to describe neural spiking activity). We found that PID suffers from a large bias that is uneven across components, with synergy by far the most biased. Using approximate analytical expansions, we found that the bias of synergy increases quadratically with the number of discrete responses of each neuron, whereas the bias of unique and redundant information increase only linearly or sub-linearly. Based on the understanding of the PID bias properties, we developed simple yet effective procedures that correct for the bias effectively, and that improve greatly the PID estimation with respect to current state-of-the-art procedures. We apply these PID bias correction procedures to datasets of 53117 pairs neurons in auditory cortex, posterior parietal cortex and hippocampus of mice performing cognitive tasks, deriving precise estimates and bounds of how synergy and redundancy vary across these brain regions.
Collapse
Affiliation(s)
- Loren Koçillari
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriel Matías Lorenz
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Nicola Marie Engel
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marco Celotto
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Simone Blanco Malerba
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
17
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Varley TF, Bongard J. Evolving higher-order synergies reveals a trade-off between stability and information-integration capacity in complex systems. CHAOS (WOODBURY, N.Y.) 2024; 34:063127. [PMID: 38865092 DOI: 10.1063/5.0200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems comprised of many interacting elements (often called "synergistic" information). This "emergent" organization has been found in a variety of natural and artificial systems, although at present, the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems under study. Typical research treats the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyze these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, the average transient length, and the Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a system's dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity) and that certain kinds of complexity naturally balance this trade-off.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Josh Bongard
- Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
19
|
Gelens F, Äijälä J, Roberts L, Komatsu M, Uran C, Jensen MA, Miller KJ, Ince RAA, Garagnani M, Vinck M, Canales-Johnson A. Distributed representations of prediction error signals across the cortical hierarchy are synergistic. Nat Commun 2024; 15:3941. [PMID: 38729937 PMCID: PMC11087548 DOI: 10.1038/s41467-024-48329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.
Collapse
Affiliation(s)
- Frank Gelens
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Juho Äijälä
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Louis Roberts
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
| | - Misako Komatsu
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands
| | - Michael A Jensen
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QB, Scotland, UK
| | - Max Garagnani
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
- Brain Language Lab, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany.
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands.
| | - Andres Canales-Johnson
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK.
- Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile.
| |
Collapse
|
20
|
Lemke SM, Celotto M, Maffulli R, Ganguly K, Panzeri S. Information flow between motor cortex and striatum reverses during skill learning. Curr Biol 2024; 34:1831-1843.e7. [PMID: 38604168 PMCID: PMC11078609 DOI: 10.1016/j.cub.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.
Collapse
Affiliation(s)
- Stefan M Lemke
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA; Neuroscience Center, University of North Carolina, Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA.
| | - Marco Celotto
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Roberto Maffulli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
21
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Varley TF. Generalized decomposition of multivariate information. PLoS One 2024; 19:e0297128. [PMID: 38315691 PMCID: PMC10843128 DOI: 10.1371/journal.pone.0297128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Since its introduction, the partial information decomposition (PID) has emerged as a powerful, information-theoretic technique useful for studying the structure of (potentially higher-order) interactions in complex systems. Despite its utility, the applicability of the PID is restricted by the need to assign elements as either "sources" or "targets", as well as the specific structure of the mutual information itself. Here, I introduce a generalized information decomposition that relaxes the source/target distinction while still satisfying the basic intuitions about information. This approach is based on the decomposition of the Kullback-Leibler divergence, and consequently allows for the analysis of any information gained when updating from an arbitrary prior to an arbitrary posterior. As a result, any information-theoretic measure that can be written as a linear combination of Kullback-Leibler divergences admits a decomposition in the style of Williams and Beer, including the total correlation, the negentropy, and the mutual information as special cases. This paper explores how the generalized information decomposition can reveal novel insights into existing measures, as well as the nature of higher-order synergies. We show that synergistic information is intimately related to the well-known Tononi-Sporns-Edelman (TSE) complexity, and that synergistic information requires a similar integration/segregation balance as a high TSE complexity. Finally, I end with a discussion of how this approach fits into other attempts to generalize the PID and the possibilities for empirical applications.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Computer Science, University of Vermont, Burlington, VT, United States of America
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
23
|
Koçillari L, Celotto M, Francis NA, Mukherjee S, Babadi B, Kanold PO, Panzeri S. Behavioural relevance of redundant and synergistic stimulus information between functionally connected neurons in mouse auditory cortex. Brain Inform 2023; 10:34. [PMID: 38052917 PMCID: PMC10697912 DOI: 10.1186/s40708-023-00212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.
Collapse
Affiliation(s)
- Loren Koçillari
- Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy.
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany.
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
| | - Marco Celotto
- Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nikolas A Francis
- Department of Biology and Brain and Behavior Institute, University of Maryland, College Park, MD, 20742, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering and Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| | - Behtash Babadi
- Department of Electrical and Computer Engineering and Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
24
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Varley TF, Pope M, Faskowitz J, Sporns O. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. Commun Biol 2023; 6:451. [PMID: 37095282 PMCID: PMC10125999 DOI: 10.1038/s42003-023-04843-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
One of the most well-established tools for modeling the brain is the functional connectivity network, which is constructed from pairs of interacting brain regions. While powerful, the network model is limited by the restriction that only pairwise dependencies are considered and potentially higher-order structures are missed. Here, we explore how multivariate information theory reveals higher-order dependencies in the human brain. We begin with a mathematical analysis of the O-information, showing analytically and numerically how it is related to previously established information theoretic measures of complexity. We then apply the O-information to brain data, showing that synergistic subsystems are widespread in the human brain. Highly synergistic subsystems typically sit between canonical functional networks, and may serve an integrative role. We then use simulated annealing to find maximally synergistic subsystems, finding that such systems typically comprise ≈10 brain regions, recruited from multiple canonical brain systems. Though ubiquitous, highly synergistic subsystems are invisible when considering pairwise functional connectivity, suggesting that higher-order dependencies form a kind of shadow structure that has been unrecognized by established network-based analyses. We assert that higher-order interactions in the brain represent an under-explored space that, accessible with tools of multivariate information theory, may offer novel scientific insights.
Collapse
Affiliation(s)
- Thomas F Varley
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
| | - Maria Pope
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Joshua Faskowitz
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Olaf Sporns
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
26
|
Varley TF. Decomposing past and future: Integrated information decomposition based on shared probability mass exclusions. PLoS One 2023; 18:e0282950. [PMID: 36952508 PMCID: PMC10035902 DOI: 10.1371/journal.pone.0282950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
A core feature of complex systems is that the interactions between elements in the present causally constrain their own futures, and the futures of other elements as the system evolves through time. To fully model all of these interactions (between elements, as well as ensembles of elements), it is possible to decompose the total information flowing from past to future into a set of non-overlapping temporal interactions that describe all the different modes by which information can be stored, transferred, or modified. To achieve this, I propose a novel information-theoretic measure of temporal dependency (Iτsx) based on the logic of local probability mass exclusions. This integrated information decomposition can reveal emergent and higher-order interactions within the dynamics of a system, as well as refining existing measures. To demonstrate the utility of this framework, I apply the decomposition to spontaneous spiking activity recorded from dissociated neural cultures of rat cerebral cortex to show how different modes of information processing are distributed over the system. Furthermore, being a localizable analysis, Iτsx can provide insight into the computational structure of single moments. I explore the time-resolved computational structure of neuronal avalanches and find that different types of information atoms have distinct profiles over the course of an avalanche, with the majority of non-trivial information dynamics happening before the first half of the cascade is completed. These analyses allow us to move beyond the historical focus on single measures of dependency such as information transfer or information integration, and explore a panoply of different relationships between elements (and groups of elements) in complex systems.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States of America
| |
Collapse
|