1
|
Harkins K, Fleckenstein C, D’Souza N, Schindler PM, Marchiori D, Artiaco C, Reynard-Feytis Q, Basumallick U, Beatrez W, Pillai A, Hagn M, Nayak A, Breuer S, Lv X, McAllister M, Reshetikhin P, Druga E, Bukov M, Ajoy A. Nanoscale engineering and dynamic stabilization of mesoscopic spin textures. SCIENCE ADVANCES 2025; 11:eadn9021. [PMID: 40153504 PMCID: PMC11952100 DOI: 10.1126/sciadv.adn9021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Thermalization, while ubiquitous in physics, has traditionally been viewed as an obstacle to be mitigated. In contrast, we demonstrate here the use of thermalization in the generation, control, and readout of "shell-like" spin textures with interacting 13C nuclear spins in diamond, wherein spins are polarized oppositely on either side of a critical radius. The textures span several nanometers and encompass many hundred spins; they are created and interrogated without manipulating the nuclear spins individually. Long-time stabilization is achieved via prethermalization to a Floquet-engineered Hamiltonian under the electronic gradient field: The texture is therefore metastable and robust against spin diffusion. This enables the state to endure over multiple minutes before it decays. Our work on spin-state engineering paves the way for applications in quantum simulation and nanoscale imaging.
Collapse
Affiliation(s)
- Kieren Harkins
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Noella D’Souza
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Paul M. Schindler
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - David Marchiori
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Claudia Artiaco
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | - Ushoshi Basumallick
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William Beatrez
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arjun Pillai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthias Hagn
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aniruddha Nayak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samantha Breuer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Maxwell McAllister
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Paul Reshetikhin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marin Bukov
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave., Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Tabatabaei S, Priyadarsi P, Singh N, Sahafi P, Tay D, Jordan A, Budakian R. Large-enhancement nanoscale dynamic nuclear polarization near a silicon nanowire surface. SCIENCE ADVANCES 2024; 10:eado9059. [PMID: 39167648 PMCID: PMC11338224 DOI: 10.1126/sciadv.ado9059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Dynamic nuclear polarization (DNP) has revolutionized the field of nuclear magnetic resonance spectroscopy, expanding its reach and capabilities to investigate diverse materials, biomolecules, and complex dynamic processes. Bringing high-efficiency DNP to the nanometer scale would open exciting avenues for studying nanoscale nuclear spin ensembles, such as single biomolecules, virus particles, and condensed matter systems. Combining pulsed DNP with nanoscale force-detected magnetic resonance measurements, we demonstrated a 100-fold enhancement in the Boltzmann polarization of proton spins in nanoscale sugar droplets at 6 kelvin and 0.33 tesla. Crucially, this enhancement corresponds to a factor of 200 reduction in the averaging time compared to measurements that rely on the detection of statistical fluctuations in nanoscale nuclear spin ensembles. These results substantially advance the capabilities of force-detected magnetic resonance detection as a practical tool for nanoscale imaging.
Collapse
Affiliation(s)
- Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pritam Priyadarsi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Namanish Singh
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Daniel Tay
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| |
Collapse
|
3
|
Pachlatko R, Prumbaum N, Krass MD, Grob U, Degen CL, Eichler A. Nanoscale Magnets Embedded in a Microstrip. NANO LETTERS 2024; 24:2081-2086. [PMID: 38300507 DOI: 10.1021/acs.nanolett.3c04818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Nanoscale magnetic resonance imaging (NanoMRI) is an active area of applied research with potential applications in structural biology and quantum engineering. The success of this technological vision hinges on improving the instrument's sensitivity and functionality. A particular challenge is the optimization of the magnetic field gradient required for spatial encoding and of the radio frequency field used for spin control, in analogy to the components used in clinical MRI. In this work, we present the fabrication and characterization of a magnet-in-microstrip device that yields a compact form factor for both elements. We find that our design leads to a number of advantages, among them a 4-fold increase of the magnetic field gradient compared to those achieved with traditional fabrication methods. Our results can be useful for boosting the efficiency of a variety of different experimental arrangements and detection principles in the field of NanoMRI.
Collapse
Affiliation(s)
- Raphael Pachlatko
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nils Prumbaum
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc-Dominik Krass
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Urs Grob
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Christian L Degen
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Eichler
- Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|