1
|
Fan S, Li J, Zhuang J, Zhou Q, Mai Y, Lin B, Wang MW, Wu C. Disulfide-Directed Multicyclic Peptides with N-Terminally Extendable α-Helices for Recognition and Activation of G Protein-Coupled Receptors. J Am Chem Soc 2025; 147:4821-4832. [PMID: 39688263 DOI: 10.1021/jacs.4c12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Many peptide hormones adopt long α-helical structures upon interacting with their cognate receptors but often exhibit flexible conformations when unbound. Strategies that can stabilize long α-helices without disrupting their binding to receptors are still lacking, which hinders progress in their biological applications and drug development. Here, we present an approach that combines rational design with library screening to create and identify a unique disulfide-directed multicyclic peptide (DDMP) scaffold, which could effectively stabilize N-terminally extendable α-helices while displaying exceptional efficiency in disulfide pairing and oxidative folding. This DDMP scaffold was then utilized for stabilizing the α-helical structure of glucagon-like peptide-1 (GLP-1), resulting in a potent GLP-1 receptor (GLP-1R) agonist with a significantly improved α-helicity and proteolytic stability. By incorporating external α-helices into the DDMP scaffold, we can effectively preserve the native N-terminal α-helical structures while allowing for extensive evolution of the C-terminal disulfide-rich domain for enhancing target binding, as demonstrated by the generation of the DDMP-stabilized GLP-1 (g1:Ox). The cryo-electron microscopy structure of the g1:Ox-GLP-1R in complex with heterotrimeric Gs reveals the molecular basis for the potent binding between g1:Ox and GLP-1R. Specifically, the DDMP moiety establishes additional interactions with the extracellular domain of GLP-1R, which are absent in the case of GLP-1. Thus, this work offers a novel and effective approach for engineering therapeutic peptides and other peptide α-helices, ensuring that both the N- and C-terminal regions remain essential for target recognition and activation.
Collapse
Affiliation(s)
- Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhuang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Bingni Lin
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Jing X, Mackay JP, Passioura T. Macrocyclic peptides as a new class of targeted protein degraders. RSC Chem Biol 2025:d4cb00199k. [PMID: 39822773 PMCID: PMC11733494 DOI: 10.1039/d4cb00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics. In particular, existing targeted degrader design is largely only applicable to the same set of protein targets as traditional small molecules (i.e., ∼15% of the human proteome). Here, we consider the potential of macrocyclic peptides to overcome this limitation. Such molecules possess several features that make them well-suited for the role, including the ability to induce the formation of ternary protein complexes that can involve relatively flat surfaces and their structural commonality with E3 ligase-recruiting peptide degrons. For these reasons, macrocyclic peptides provide the opportunity both to broaden the number of targets accessible to degrader activity and to broaden the number of E3 ligases that can be harnessed to mediate that activity.
Collapse
Affiliation(s)
- Xuefei Jing
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Toby Passioura
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Insamo South Pty Ltd Chippendale NSW 2008 Australia
| |
Collapse
|
3
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Yeste-Vázquez A, Paulussen FM, Wendt M, Klintrot R, Schulte C, Wallraven K, van Gijzel L, Simeonov B, van der Gaag M, Gerber A, Maric HM, Hennig S, Grossmann TN. Structure-Based Design of Bicyclic Helical Peptides That Target the Oncogene β-Catenin. Angew Chem Int Ed Engl 2024; 63:e202411749. [PMID: 39167026 DOI: 10.1002/anie.202411749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The inhibition of intracellular protein-protein interactions is challenging, in particular, when involved interfaces lack pronounced cavities. The transcriptional co-activator protein and oncogene β-catenin is a prime example of such a challenging target. Despite extensive targeting efforts, available high-affinity binders comprise only large molecular weight inhibitors. This hampers the further development of therapeutically useful compounds. Herein, we report the design of a considerably smaller peptidomimetic scaffold derived from the α-helical β-catenin-binding motif of Axin. Sequence maturation and bicyclization provided a stitched peptide with an unprecedented crosslink architecture. The binding mode and site were confirmed by a crystal structure. Further derivatization yielded a β-catenin inhibitor with single-digit micromolar activity in a cell-based assay. This study sheds light on how to design helix mimetics with reduced molecular weight thereby improving their biological activity.
Collapse
Affiliation(s)
- Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lieke van Gijzel
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Boris Simeonov
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maurice van der Gaag
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Chène P. Direct Inhibition of the YAP : TEAD Interaction: An Unprecedented Drug Discovery Challenge. ChemMedChem 2024; 19:e202400361. [PMID: 38863297 DOI: 10.1002/cmdc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP : TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.
Collapse
Affiliation(s)
- Patrick Chène
- Disease Area Oncology, Biomedical Research, CH-4056, Basel, Switzerland
- Novartis, WSJ 386 4.13.06, CH-4002, Basel, Switzerland
| |
Collapse
|
7
|
Yu Z, Ran G, Chai J, Zhang EE. A nature-inspired HIF stabilizer derived from a highland-adaptation insertion of plateau pika Epas1 protein. Cell Rep 2024; 43:114727. [PMID: 39269902 DOI: 10.1016/j.celrep.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play pivotal roles in numerous diseases and high-altitude adaptation, and HIF stabilizers have emerged as valuable therapeutic tools. In our prior investigation, we identified a highland-adaptation 24-amino-acid insertion within the Epas1 protein. This insertion enhances the protein stability of Epas1, and mice engineered with this insertion display enhanced resilience to hypoxic conditions. In the current study, we delved into the biochemical mechanisms underlying the protein-stabilizing effects of this insertion. Our findings unveiled that the last 11 amino acids within this insertion adopt a helical conformation and interact with the α-domain of the von Hippel-Lindau tumor suppressor protein (pVHL), thereby disrupting the Eloc-pVHL interaction and impeding the ubiquitination of Epas1. Utilizing a synthesized peptide, E14-24, we demonstrated its favorable membrane permeability and ability to stabilize endogenous HIF-α proteins, inducing the expression of hypoxia-responsive element (HRE) genes. Furthermore, the administration of E14-24 to mice subjected to hypoxic conditions mitigated body weight loss, suggesting its potential to enhance hypoxia adaptation.
Collapse
Affiliation(s)
- Ziqing Yu
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100006, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Juan Chai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
8
|
Callahan AJ, Gandhesiri S, Travaline TL, Reja RM, Lozano Salazar L, Hanna S, Lee YC, Li K, Tokareva OS, Swiecicki JM, Loas A, Verdine GL, McGee JH, Pentelute BL. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat Commun 2024; 15:1813. [PMID: 38418820 PMCID: PMC10901774 DOI: 10.1038/s41467-024-45634-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins - almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.
Collapse
Affiliation(s)
- Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tara L Travaline
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Rahi M Reja
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lia Lozano Salazar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephanie Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yen-Chun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Kunhua Li
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Olena S Tokareva
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Jean-Marie Swiecicki
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Relay Therapeutics, Inc., 399 Binney Street, 2nd Floor, Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory L Verdine
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - John H McGee
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA.
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
9
|
Chandramohan A, Josien H, Yuen TY, Duggal R, Spiegelberg D, Yan L, Juang YCA, Ge L, Aronica PG, Kaan HYK, Lim YH, Peier A, Sherborne B, Hochman J, Lin S, Biswas K, Nestor M, Verma CS, Lane DP, Sawyer TK, Garbaccio R, Henry B, Kannan S, Brown CJ, Johannes CW, Partridge AW. Design-rules for stapled peptides with in vivo activity and their application to Mdm2/X antagonists. Nat Commun 2024; 15:489. [PMID: 38216578 PMCID: PMC10786919 DOI: 10.1038/s41467-023-43346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024] Open
Abstract
Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology. Workflow application gives peptides with >292x improved cell proliferation potencies and no off-target cell proliferation effects ( > 3800x on-target index). Application of these 'design rules' to a distinct Mdm2(X) peptide series improves ( > 150x) cellular potencies and removes off-target toxicities. The outlined workflow should facilitate therapeutic impacts, especially for those targets such as Mdm2(X) that have hydrophobic interfaces and are targetable with a helical motif.
Collapse
Affiliation(s)
| | | | - Tsz Ying Yuen
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore
| | | | - Diana Spiegelberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Lan Ge
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Pietro G Aronica
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore
| | | | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore
| | | | | | | | | | | | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore
| | - David P Lane
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | | | | | - Brian Henry
- MSD International, Singapore, 138665, Singapore.
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore.
| | | | - Charles W Johannes
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore.
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- EPOC Scientific LLC, Stoneham, MA, 02180, USA.
| | - Anthony W Partridge
- MSD International, Singapore, 138665, Singapore.
- Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Tokareva OS, Li K, Travaline TL, Thomson TM, Swiecicki JM, Moussa M, Ramirez JD, Litchman S, Verdine GL, McGee JH. Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides. Nat Commun 2023; 14:6992. [PMID: 37914719 PMCID: PMC10620186 DOI: 10.1038/s41467-023-42395-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Molecules that induce novel interactions between proteins hold great promise for the study of biological systems and the development of therapeutics, but their discovery has been limited by the complexities of rationally designing interactions between three components, and because known binders to each protein are typically required to inform initial designs. Here, we report a general and rapid method for discovering α-helically constrained (Helicon) polypeptides that cooperatively induce the interaction between two target proteins without relying on previously known binders or an intrinsic affinity between the proteins. We show that Helicons are capable of binding every major class of E3 ubiquitin ligases, which are of great biological and therapeutic interest but remain largely intractable to targeting by small molecules. We then describe a phage-based screening method for discovering "trimerizer" Helicons, and apply it to reprogram E3s to cooperatively bind an enzyme (PPIA), a transcription factor (TEAD4), and a transcriptional coactivator (β-catenin).
Collapse
Affiliation(s)
| | - Kunhua Li
- FOG Pharmaceuticals Inc., Cambridge, MA, USA
- Kymera Therapeutics, Inc., Watertown, MA, USA
| | | | | | - Jean-Marie Swiecicki
- FOG Pharmaceuticals Inc., Cambridge, MA, USA
- Relay Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | - Gregory L Verdine
- FOG Pharmaceuticals Inc., Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard, University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | |
Collapse
|
11
|
Trejos M, Aristizabal Y, Aragón-Muriel A, Oñate-Garzón J, Liscano Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). Int J Mol Sci 2023; 24:13091. [PMID: 37685896 PMCID: PMC10487549 DOI: 10.3390/ijms241713091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The growing challenge of chronic wounds and antibiotic resistance has spotlighted the potential of dual-function peptides (antimicrobial and wound healing) as novel therapeutic strategies. The investigation aimed to characterize and correlate in silico the physicochemical attributes of these peptides with their biological activity. We sourced a dataset of 207 such peptides from various peptide databases, followed by a detailed analysis of their physicochemical properties using bioinformatic tools. Utilizing statistical tools like clustering, correlation, and principal component analysis (PCA), patterns and relationships were discerned among these properties. Furthermore, we analyzed the peptides' functional domains for insights into their potential mechanisms of action. Our findings spotlight peptides in Cluster 2 as efficacious in wound healing, whereas Cluster 1 peptides exhibited pronounced antimicrobial potential. In our study, we identified specific amino acid patterns and peptide families associated with their biological activities, such as the cecropin antimicrobial domain. Additionally, we found the presence of polar amino acids like arginine, cysteine, and lysine, as well as apolar amino acids like glycine, isoleucine, and leucine. These characteristics are crucial for interactions with bacterial membranes and receptors involved in migration, proliferation, angiogenesis, and immunomodulation. While this study provides a groundwork for therapeutic development, translating these findings into practical applications necessitates additional experimental and clinical research.
Collapse
Affiliation(s)
- María Trejos
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Yesid Aristizabal
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
- Grupo de Investigación e Innovación en Biotecnología (BITI), Tecnoparque Nodo Valle, Servicio Nacional de Aprendizaje (SENA), Cali 760044, Colombia
| | - José Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
12
|
Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG, Olsen TJ, Brennan MJ, Verdine GL, McGee JH. De novo mapping of α-helix recognition sites on protein surfaces using unbiased libraries. Proc Natl Acad Sci U S A 2022; 119:e2210435119. [PMID: 36534810 PMCID: PMC9907135 DOI: 10.1073/pnas.2210435119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
The α-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable α-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of α-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering α-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized α-helix recognition sites, and restricting the starting chemical matter to those known α-helical binders. Here, we report a general and rapid screening method to empirically map the α-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated α-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct α-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets.
Collapse
Affiliation(s)
- Kunhua Li
- FOG Pharmaceuticals Inc., Cambridge, MA02140
| | | | | | | | | | | | | | | | | | | | | | - Gregory L. Verdine
- FOG Pharmaceuticals Inc., Cambridge, MA02140
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | | |
Collapse
|