1
|
Levenson D, Romero R, Miller D, Galaz J, Garcia-Flores V, Neshek B, Pique-Regi R, Gomez-Lopez N. The maternal-fetal interface at single-cell resolution: uncovering the cellular anatomy of the placenta and decidua. Am J Obstet Gynecol 2025; 232:S55-S79. [PMID: 40253083 DOI: 10.1016/j.ajog.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 04/21/2025]
Abstract
The maternal-fetal interface represents a critical site of immunological interactions that can greatly influence pregnancy outcomes. The unique cellular composition and cell-cell interactions taking place within these tissues has spurred substantial research efforts focused on the maternal-fetal interface. With the recent advent of single-cell technologies, multiple investigators have applied such methods to gain an unprecedented level of insight into maternal-fetal communication. Here, we provide an overview of the dynamic cellular composition and cell-cell communications at the maternal-fetal interface as reported by single-cell investigations. By primarily focusing on data from pregnancies in the second and third trimesters, we aim to showcase how single-cell technologies have bolstered the foundational understanding of each cell's contribution to physiologic gestation. Indeed, single-cell technologies have enabled the examination of classical placental cells, such as the trophoblast, as well as uncovered new roles for structural cells now recognized as active participants in pregnancy and parturition, such as decidual and fetal stromal cells, which are reviewed herein. Furthermore, single-cell data investigating the ontogeny, function, differentiation, and interactions among immune cells present at the maternal-fetal interface, namely macrophages, T cells, dendritic cells, neutrophils, mast cells, innate lymphoid cells, natural killer cells, and B cells are discussed in this review. Moreover, a key output of single-cell investigations is the inference of cell-cell interactions, which has been leveraged to not only dissect the intercellular communications within specific tissues but also between compartments such as the decidua basalis and placental villi. Collectively, this review emphasizes the ways by which single-cell technologies have expanded the understanding of cell composition and cellular processes underlying pregnancy in mid-to-late gestation at the maternal-fetal interface, which can prompt their continued application to reveal new pathways and targets for the treatment of obstetrical disease.
Collapse
Affiliation(s)
- Dustyn Levenson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Derek Miller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Jose Galaz
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Barbara Neshek
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
2
|
Lv M, Jia Y, Dong J, Wu S, Ying H. The landscape of decidual immune cells at the maternal-fetal interface in parturition and preterm birth. Inflamm Res 2025; 74:44. [PMID: 40038160 DOI: 10.1007/s00011-025-02015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Parturition is similar to an inflammatory response in which resident and infiltrating immune cells release cytokines and chemokines into the maternal-fetal interface, promoting expulsion of the fetus from the mother. The untimely activation of these inflammatory pathways can result in preterm labor. The maternal-fetal interface is composed mainly of decidual tissue and placental villous space. OBJECTIVE The objective of this review is to examine the role and mechanisms of decidual immune cells during parturition and preterm birth. A deeper understanding of decidual immune cells at the maternal-fetal interface could provide significant insight into parturition and preterm birth pathogenesis. METHODS We searched major databases (including PubMed, Web of Science, and Google Scholar etc.) for literature encompassing decidual immune cells, parturition and preterm birth up to July 2024 and combined with studies found in the reference lists of the included studies. RESULTS Decidual neutrophils release inflammatory mediators that facilitate parturition. The M1/M2 ratio of decidual macrophages increases among preterm birth population. Mast cells may cause uterine contractions. In parturition and preterm birth, there is an increase in CD56dimCD16+ natural killer cells and immature dendritic cells. The increase of Th1/Th2 and Th17/Treg cells leads to preterm birth. Women with preterm birth had a higher proportion of decidual B cells. ILC2 can help protect the steady-state environment at the maternal-fetal interface. The activation of invariant NKT cells plays an important role in inflammation-induced preterm birth. These decidual immune cells communicate with each other. The development of sequencing technology enables a more in-depth study of decidual immune cells. CONCLUSION The dynamic balance of the maternal-fetal immune microenvironment plays a crucial role in maintaining human pregnancy and in the initiation of delivery. A deep understanding of the mechanism of decidual immune dysfunction is crucial for understanding the pathogenesis of preterm birth.
Collapse
Affiliation(s)
- Mu Lv
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200092, China
| | - Yuanhui Jia
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200092, China
| | - Jiaqi Dong
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200092, China
| | - Shengyu Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200092, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zhu C, Zhu B, Xu S, Li L, Song Y, Tang C. ARID1A: Multiple functions in human pregnancy. J Reprod Immunol 2025; 168:104448. [PMID: 39908786 DOI: 10.1016/j.jri.2025.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
AT-rich interacting domain containing respectively protein 1 A (ARID1A), a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, has been shown to play an important role in various physiological processes and diseases including female reproductive tumors, such as ovarian cancer and breast cancer. In addition to the studies regarding ARID1A expression and function in cancer, recent findings elucidate its important role in maintaining normal tissue homeostasis and cell differentiation by controlling chromatin remodeling and transcription factors recruitment. In the context of human pregnancy, ARID1A has been implicated in several pregnancy-related complications, including gestational diabetes, preeclampsia, and intrauterine growth restriction. This review examines the current research on the role of ARID1A in pregnancy, highlighting its potential as a biomarker and therapeutic target for these complications. Understanding the involvement of ARID1A in placental function and pregnancy-related disorders may provide valuable insights for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital, Naval Medical University, Shanghai, 201805, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
4
|
Vornic I, Buciu V, Furau CG, Zara F, Novacescu D, Barb AC, Cumpanas AA, Latcu SC, Sas I, Serban D, Cut TG, Dumitru CS. The Interplay of Molecular Factors and Morphology in Human Placental Development and Implantation. Biomedicines 2024; 12:2908. [PMID: 39767812 PMCID: PMC11673845 DOI: 10.3390/biomedicines12122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The placenta is a vital organ that supports fetal development by mediating nutrient and gas exchange, regulating immune tolerance, and maintaining hormonal balance. Its formation and function are tightly linked to the processes of embryo implantation and the establishment of a robust placental-uterine interface. Recent advances in molecular biology and histopathology have shed light on the key regulatory factors governing these processes, including trophoblast invasion, spiral artery remodeling, and the development of chorionic villi. This review integrates morphological and molecular perspectives on placental development, emphasizing the roles of cytokines, growth factors, and signaling pathways, such as VEGF and Notch signaling, in orchestrating implantation and placental formation. The intricate interplay between molecular regulation and morphological adaptations highlights the placenta's critical role as a dynamic interface in pregnancy. This review synthesizes current findings to offer clinicians and researchers a comprehensive understanding of the placenta's role in implantation, emphasizing its importance in maternal-fetal medicine. By integrating these insights, the review lays the groundwork for advancing diagnostic and therapeutic approaches that can enhance pregnancy outcomes and address related complications effectively.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Department Medicine, “Vasile Goldiș” Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania;
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Victor Buciu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cristian George Furau
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (D.N.); (A.C.B.); (C.S.D.)
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (D.N.); (A.C.B.); (C.S.D.)
| | - Alina Cristina Barb
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (D.N.); (A.C.B.); (C.S.D.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ioan Sas
- Department XII, Discipline of Gynecology and Obstetrics, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (D.S.)
| | - Denis Serban
- Department XII, Discipline of Gynecology and Obstetrics, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (D.S.)
| | - Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (D.N.); (A.C.B.); (C.S.D.)
| |
Collapse
|
5
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. JCI Insight 2024; 10:e186471. [PMID: 39625795 PMCID: PMC11790029 DOI: 10.1172/jci.insight.186471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Transcription factor AP-2 gamma (TFAP2C) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c. In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
Affiliation(s)
- Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
6
|
Zang X, Zhang D, Wang W, Ding Y, Wang Y, Gu S, Shang Y, Gan J, Jiang L, Meng F, Shi J, Xu Z, Huang S, Li Z, Wu Z, Gu T, Cai G, Hong L. Cross-Species Insights into Trophoblast Invasion During Placentation Governed by Immune-Featured Trophoblast Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407221. [PMID: 39234818 PMCID: PMC11558115 DOI: 10.1002/advs.202407221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Proper development of the placenta, the transient support organ forms after embryo implantation, is essential for a successful pregnancy. However, the regulation of trophoblast invasion, which is most important during placentation, remains largely unknown. Here, rats, mice, and pigs are used as biomedical models, used scRNA-seq to comparatively elucidate the regulatory mechanism of placental trophoblast invasion, and verified it using a human preeclampsia disease model combined with scStereo-seq. A dual-featured type of immune-featured trophoblast (iTrophoblast) is unexpectedly discovered. Interestingly, iTrophoblast only exists in invasive placentas and regulates trophoblast invasion during placentation. In a normally developing placenta, iTrophoblast gradually transforms from an immature state into a functional mature state as it develops. Whereas in the developmentally abnormal preeclamptic placenta, disordered iTrophoblast transformation leads to the accumulation of immature iTrophoblasts, thereby disrupting trophoblast invasion and ultimately leading to the progression of preeclampsia.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Dan Zhang
- Reproductive Medicine CenterGuangdong Provincial Key Laboratory of Reproductive MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yijun Shang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhou510640P. R. China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| |
Collapse
|
7
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Matthews J, Rajakumar B, Carreon CK, Morton SU. Placental-Heart Axis: An Evolutionary Perspective. Int J Mol Sci 2024; 25:11212. [PMID: 39456993 PMCID: PMC11508449 DOI: 10.3390/ijms252011212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
To maintain its development, the growing fetus is directly dependent on the placenta, an organ that acts as both a modulator and mediator. As an essential component of pregnancy that is derived from both maternal and fetal tissues, the placenta facilitates the passage of all oxygen and nutrients from the expecting parent to their fetuses. Further, the placenta conveys multiple impacts of the maternal environment to the growing fetus. The timing of placental development parallels that of the fetal cardiovascular system, and placental anomalies are implicated as a potential cause of congenital heart disease. For example, congenital heart disease is more common in pregnancies complicated by maternal preeclampsia, a condition characterized by placental dysfunction. Given the placenta's intermediary links to the maternal environment and fetal health outcomes, it is an emerging focus of evolutionary medicine, which seeks to understand how interactions between humans and the environment affect our biology and give rise to disease. The present review provides an overview of the evolutionary and developmental courses of the placenta as well as their implications on infant health.
Collapse
Affiliation(s)
- Jadyn Matthews
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (J.M.); (B.R.)
| | - Brammy Rajakumar
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (J.M.); (B.R.)
| | - Chrystalle Katte Carreon
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (J.M.); (B.R.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-mediated WNT silencing drives extravillous trophoblast cell lineage development. Proc Natl Acad Sci U S A 2024; 121:e2403003121. [PMID: 39325428 PMCID: PMC11459147 DOI: 10.1073/pnas.2403003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Ayelen Moreno-Irusta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Kaela M. Varberg
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Marija Kuna
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Anna M. Galligos
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - John D. Aplin
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
10
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
11
|
Sairenji TJ, Masuda S, Higuchi Y, Miyazaki M, Yajima H, Kwan Ee O, Fujiwara Y, Araki T, Shimokawa N, Koibuchi N. Plasma prolactin axis shift from placental to pituitary origin in late prepartum mice. Endocr J 2024; 71:661-674. [PMID: 38749736 DOI: 10.1507/endocrj.ej23-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The placenta secretes a prolactin (PRL)-like hormone PRL3B1 (placental lactogen II), a luteotropic hormone essential for maintaining pregnancy until labor in mice. A report from 1984 examined the secretion pattern of PRL3B1 in prepartum mice. In the current study, we found contradictory findings in the secretion pattern that invalidate the previous report. By measuring maternal plasma PRL3B1 and PRL every 4 hrs from gestational day 17 (G17), we newly discovered that maternal plasma PRL3B1 levels decrease rapidly in prepartum C57BL/6 mice. Interestingly, the onset of this decline coincided with the PRL surge at G18, demonstrating a plasma prolactin axis shift from placental to pituitary origin. We also found that maternal plasma progesterone regression precedes the onset of the PRL shift. The level of Prl3b1 mRNA was determined by RT-qPCR in the placenta and remained stable until parturition, implying that PRL3B1 peptide production or secretion was suppressed. We hypothesized that production of the PRL family, the 25 paralogous PRL proteins exclusively expressed in mice placenta, would decrease alongside PRL3B1 during this period. To investigate this hypothesis and to seek proteomic changes, we performed a shotgun proteome analysis of the placental tissue using data-independent acquisition mass spectrometry (DIA-MS). Up to 5,891 proteins were identified, including 17 PRL family members. Relative quantitative analysis between embryonic day 17 (E17) and E18 placentas showed no significant difference in the expression of PRL3B1 and most PRL family members except PRL7C1. These results suggest that PRL3B1 secretion from the placenta is suppressed at G18 (E18).
Collapse
Affiliation(s)
- Taku James Sairenji
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Shinnosuke Masuda
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
- Laboratory of Epigenetics and Metabolism, Institute of Molecular and Cellular Regulations, Gunma 371-8512, Japan
| | - Yuya Higuchi
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Mitsue Miyazaki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
- Department of Nutrition, Takasaki University of Health and Welfare, Gunma 370-0033, Japan
| | - Hiroyuki Yajima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Oh Kwan Ee
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yuki Fujiwara
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
- Department of Nutrition, Takasaki University of Health and Welfare, Gunma 370-0033, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
12
|
Iqbal K, Dominguez EM, Nixon B, Moreno-Irusta A, Crnkovich B, Scott RL, Vu HTH, Tuteja G, Vivian JL, Soares MJ. Conditionally mutant animal model for investigating the invasive trophoblast cell lineage. Development 2024; 151:dev202239. [PMID: 38112206 PMCID: PMC10820817 DOI: 10.1242/dev.202239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brandon Nixon
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin Crnkovich
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Jay L. Vivian
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO 64018, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Davenport KM, O'Neil EV, Ortega MS, Patterson A, Kelleher AM, Warren WC, Spencer TE. Single-cell insights into development of the bovine placenta†. Biol Reprod 2024; 110:169-184. [PMID: 37707543 DOI: 10.1093/biolre/ioad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
A central determinant of pregnancy success is proper development of the conceptus (embryo/fetus and associated extraembryonic membranes including the placenta). Although the gross morphology and histology of the bovine placenta have been well studied, the cellular and molecular mechanisms regulating placenta development and trophoblast differentiation and function remain essentially undefined. Here, single-cell transcriptome (scRNA-seq) analysis was performed on the day 17 bovine conceptus and chorion of day 24, 30, and 50 conceptuses (n = 3-4 samples per day) using the 10X Genomics platform. Bioinformatic analyses identified cell types and their ontogeny including trophoblast, mesenchyme, and immune cells. Loss of interferon tau-expressing trophoblast uninucleate cells occurred between days 17 and 30, whereas binucleate cells, identified based on expression of placental lactogen (CSH2) and specific pregnancy-associated glycoprotein genes (PAGs), first appeared on day 24. Several different types of uninucleate cells were present in day 24, 30, and 50 samples, but only one (day 24) or two types of binucleate cells (days 30 and 50). Cell trajectory analyses provided a conceptual framework for uninucleate cell development and binucleate cell differentiation, and bioinformatic analyses identified candidate transcription factors governing differentiation and function of the trophoblasts. The digital atlas of cell types in the developing bovine conceptus reported here serves as a resource to discover key genes and biological pathways regulating its development during the critical periods of implantation and placentation.
Collapse
Affiliation(s)
| | - Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - M Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Amanda Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Moreno-Irusta A, Dominguez EM, Iqbal K, Zhang X, Wang N, Soares MJ. TAF7L regulates early stages of male germ cell development in the rat. FASEB J 2024; 38:e23376. [PMID: 38112167 PMCID: PMC11246239 DOI: 10.1096/fj.202301716rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.
Collapse
Affiliation(s)
- Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaoyu Zhang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ning Wang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
15
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. Core conserved transcriptional regulatory networks define the invasive trophoblast cell lineage. Development 2023; 150:dev201826. [PMID: 37417811 PMCID: PMC10445752 DOI: 10.1242/dev.201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. CORE CONSERVED TRANSCRIPTIONAL REGULATORY NETWORKS DEFINE THE INVASIVE TROPHOBLAST CELL LINEAGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534962. [PMID: 37066272 PMCID: PMC10103937 DOI: 10.1101/2023.03.30.534962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The invasive trophoblast cell lineage in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model to study hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus (sn) ATAC-seq data from gestation day (gd) 15.5 and 19.5 rat uterine-placental interface tissues and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells, and compared invasive trophoblast chromatin accessibility to extravillous trophoblast (EVT) cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO, 64108
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| |
Collapse
|
17
|
Abstract
Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.
Collapse
|