1
|
Raspeño-García JF, González-Granero S, Herranz-Pérez V, Cózar-Cuesta A, Artacho-Pérula E, Insausti R, García-Verdugo JM, de la Rosa-Prieto C. Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment. Tissue Cell 2025; 93:102737. [PMID: 39827708 DOI: 10.1016/j.tice.2025.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years). Three concentric layers were identified in coronal sections: the external layer (EL), the axonal layer (AL), and the internal layer (IL). Immunohistochemistry revealed the distribution of neurons and glial cells throughout the OP. Two neuronal morphologies were observed: granule cells and larger pyramidal cells, the latter associated with projection neurons of the anterior olfactory nucleus. Astrocytes were uniformly distributed with a more radial morphology in the EL. Oligodendrocytes were mainly located in the AL. Blood vessels (BVs) were evenly distributed along the OP, with a mean luminal area of 82.9 µm² and a density of 1.26 %, with a significant increase in the IL. Corpora amylacea (CA) were abundant, with an average size of 49.3 µm² and a density of 3.23 %. CA clustered near BVs, particularly at tissue edges, with both size and density increasing with age. Notably, CA showed strong associations with astrocytes. This study provides the first detailed qualitative and quantitative data on the internal organization of the human OP, which may contribute to a better understanding of the pathophysiology of some neuropathological disorders.
Collapse
Affiliation(s)
- J F Raspeño-García
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - S González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - A Cózar-Cuesta
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - E Artacho-Pérula
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - R Insausti
- Human Neuroanatomy Laboratory, Biomedicine Institute-UCLM, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain.
| | - C de la Rosa-Prieto
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
2
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
3
|
Phua TJ. Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan. FRONTIERS IN AGING 2025; 5:1526230. [PMID: 39839443 PMCID: PMC11747043 DOI: 10.3389/fragi.2024.1526230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory. Understanding this complex web is a major challenge in Geroscience, yet it is crucial for developing effective strategies that promote healthy aging, reduce medical costs, and ensure the sustainability of health systems. Gaining insights in this area is essential for creating interventions that can slow the aging process, enhance healthspan, and decrease the likelihood of age-related diseases. The integration of knowledge from various fields concerning the middle-aging nitric oxide (NO)-mediated hypovascularity hypoxia hemodynamic hypothesis points to a systems-based approach to the biological hallmarks of aging. Key evidence suggests a systemic connection between the endocrine system (specifically sex hormones), endogenous NO deficiency, and the vascular system, which serves as a network of microvascular structures crucial for tissue perfusion functions at cellular level. These processes also involve oxidative stress and inflammation triggered by hypoxia.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
4
|
Li Y, Liu P, Lin Q, Li W, Zhang Y, Li J, Li X, Gong Q, Zhang H, Li L, Sima X, Cao D, Huang X, Huang K, Zhou D, An D. Temporopolar blurring signifies abnormalities of white matter in mesial temporal lobe epilepsy. Ann Clin Transl Neurol 2024; 11:2932-2945. [PMID: 39342438 PMCID: PMC11572732 DOI: 10.1002/acn3.52204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE The single-center retrospective cohort study investigated underlying pathogenic mechanisms and clinical significance of patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), in the presence/absence of gray-white matter abnormalities (usually called "blurring"; GMB) in ipsilateral temporopolar region (TPR) on MRI. METHODS The study involved 105 patients with unilateral TLE-HS (60 GMB+ and 45 GMB-) who underwent standard anterior temporal lobectomy, along with 61 healthy controls. Resected specimens were examined under light microscope. With combined T1-weighted and DTI data, we quantitatively compared large-scale morphometric features and exacted diffusion parameters of ipsilateral TPR-related superficial and deep white matter (WM) by atlas-based segmentation. Along-tract analysis was added to detect heterogeneous microstructural alterations at various points along deep WM tracts, which were categorized into inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and temporal cingulum. RESULTS Comparable seizure semiology and postoperative seizure outcome were found, while the GMB+ group had significantly higher rate of HS Type 1 and history of febrile seizures, contrasting with significantly lower proportion of interictal contralateral epileptiform discharges, HS Type 2, and increased wasteosomes in hippocampal specimens. Similar morphometric features but greater WM atrophy with more diffusion abnormalities of superficial WM was observed adjacent to ipsilateral TPR in the GMB+ group. Moreover, microstructural alterations resulting from temporopolar GMB were more localized in temporal cingulum while evenly and widely distributed along ILF and UF. INTERPRETATION Temporopolar GMB could signify more severe and widespread microstructural damage of white matter rather than a focal cortical lesion in TLE-HS, affecting selection of surgical procedures.
Collapse
Affiliation(s)
- Yuming Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Peiwen Liu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiuxing Lin
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Wei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Yingying Zhang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Jinmei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiuli Li
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Heng Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Luying Li
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiutian Sima
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Danyang Cao
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiang Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Kailing Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dongmei An
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| |
Collapse
|
5
|
Liu J, Binding L, Puntambekar I, Patodia S, Lim YM, Mryzyglod A, Xiao F, Pan S, Mito R, de Tisi J, Duncan JS, Baxendale S, Koepp M, Thom M. Microangiopathy in temporal lobe epilepsy with diffusion MRI alterations and cognitive decline. Acta Neuropathol 2024; 148:49. [PMID: 39377933 PMCID: PMC11461556 DOI: 10.1007/s00401-024-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorβ and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuroscience, University of Westminster, London, UK
| | - Lawrence Binding
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Isha Puntambekar
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yau Mun Lim
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alicja Mryzyglod
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shengning Pan
- Department of Statistical Science, University College London, Gower St., London, UK
| | - Remika Mito
- Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
6
|
Romera C, Riba M, Alsina R, Sartorio M, Vilaplana J, Pelegrí C, Del Valle J. Mouse brain contains age-dependent extraparenchymal granular structures and astrocytes, both reactive to natural IgM antibodies, linked to the fissura magna. Immun Ageing 2024; 21:56. [PMID: 39169358 PMCID: PMC11337560 DOI: 10.1186/s12979-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mouse brains can contain specific polyglucosan aggregates known as Periodic Acid-Schiff (PAS)-granules. Generated in astrocytes, these granules increase with age and exhibit neo-epitopes of carbohydrate nature that are recognized by natural IgM antibodies (IgMs). The existence of neoepitopes on PAS granules suggests the presence of neoepitopes in other brain structures, and this is investigated here. To this end, brain sections from SAMP8 and ICR-CD1 mice were examined at different ages. RESULTS We have identified two novel structures that, apart from PAS granules, are recognized by natural IgMs. On one side, IgM reactive (IgM+) granular structures which are placed in the longitudinal fissure, the quadrigeminal cistern, and a region that extends from the quadrigeminal cistern to the interpeduncular cistern. This last region, located between the telencephalon and both the mesencephalon and diencephalon, is designated henceforth as the fissura magna, as it is indeed a fissure and the largest in the brain. As all these regions are extraparenchymal (EP), the IgM+ granules found in these zones have been named EP granules. These EP granules are mainly associated with fibroblasts and are not stained with PAS. On the other side, some IgM+ astrocytes have been found in the glia limitans, near the above-mentioned fissures. Remarkably, EP granules are more prevalent at younger ages, while the number of IgM+ astrocytes increases with age, similarly to the already described evolution of PAS granules. CONCLUSIONS The present work reports the presence of two brain-related structures that, apart from PAS granules, contain neo-epitopes of carbohydrate nature, namely EP granules and IgM+ astrocytes. We suggest that EP granules, associated to fibroblasts, may be part of a physiological function in brain clearance or brain-CSF immune surveillance, while both PAS granules and IgM+ astrocytes may be related to the increasing accumulation of harmful materials that occurs with age and linked to brain protective mechanisms. Moreover, the specific localisation of these EP granules and IgM+ astrocytes suggest the importance of the fissura magna in these brain-related cleaning and immune functions. The overall results reinforce the possible link between the fissura magna and the functioning of the glymphatic system.
Collapse
Affiliation(s)
- Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marina Sartorio
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| |
Collapse
|
7
|
Dallmeier JD, Gober R, Vontell RT, Barreda A, Dorfsman DA, Davis DA, Sun X, Brzostowicki D, Bennett I, Garamszegi SP, Wander CM, Cohen T, Scott WK. Corpora amylacea negatively correlate with hippocampal tau pathology in Alzheimer's disease. Front Neurosci 2024; 18:1286924. [PMID: 38486969 PMCID: PMC10937356 DOI: 10.3389/fnins.2024.1286924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Severity and distribution of aggregated tau and neurofibrillary tangles (NFT) are strongly correlated with the clinical presentation of Alzheimer's disease (AD). Clearance of aggregated tau could decrease the rate of NFT formation and delay AD onset. Recent studies implicate corpora amylacea (CA) as a regulator of onset or accumulation of tau pathology. Normally, CA clear brain waste products by amassing cellular debris, which are then extruded into the cerebrospinal fluid to be phagocytosed. The proper functioning of CA may slow progression of AD-associated NFT pathology, and this relationship may be influenced by amount and distribution of phospho-tau (pTau) produced, age, sex, and genetic risk. Objective The goal of this study was to determine if CA size and number are associated with hippocampal location and local pTau severity while accounting for variations in age, sex, and genetic risk. Methods Postmortem brain hippocampal tissue sections from 40 AD and 38 unaffected donors were immunohistochemically stained with AT8 (pTau) and counter stained with periodic acid Schiff (PAS). Stained sections of the CA1 and CA3 regions of the hippocampus were analyzed. The percent area occupied (%AO) of CA, pTau, and NFT was calculated. Pairwise comparisons and regression modeling were used to analyze the influence of age, pTau %AO, and genetic risk on %AO by CA in each region, separately in donors with AD and unaffected donors. Results CA %AO was significantly higher in the CA3 region compared to CA1 in both groups. A significant negative correlation of CA %AO with both pTau %AO and neurofibrillary tangle %AO in the CA3 region of AD brain donors was found. Regression analysis in the CA3 region revealed a significant negative association between CA with both pTau and age. Conclusion We found an increase of CA in the CA3 region, compared to CA1 region, in AD and unaffected donors. This may suggest that the CA3 region is a hub for waste removal. Additionally, the negative correlation between %AO by CA and NFT in the CA3 region of the hippocampus in donors with AD suggests CA could play a role in AD pathologic progression by influencing tau clearance.
Collapse
Affiliation(s)
- Julian D. Dallmeier
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ryan Gober
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Regina T. Vontell
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ayled Barreda
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel A. Dorfsman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David A. Davis
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaoyan Sun
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Brzostowicki
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Illiana Bennett
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Susanna P. Garamszegi
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Connor M. Wander
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd Cohen
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William K. Scott
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Lee JY, Mack AF, Mattheus U, Donato S, Longo R, Tromba G, Shiozawa T, Scheffler K, Hagberg GE. Distribution of corpora amylacea in the human midbrain: using synchrotron radiation phase-contrast microtomography, high-field magnetic resonance imaging, and histology. Front Neurosci 2023; 17:1236876. [PMID: 37869518 PMCID: PMC10586329 DOI: 10.3389/fnins.2023.1236876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Corpora amylacea (CA) are polyglucosan aggregated granules that accumulate in the human body throughout aging. In the cerebrum, CA have been found in proximity to ventricular walls, pial surfaces, and blood vessels. However, studies showing their three-dimensional spatial distribution are sparse. In this study, volumetric images of four human brain stems were obtained with MRI and phase-contrast X-ray microtomography, followed up by Periodic acid Schiff stain for validation. CA appeared as hyperintense spheroid structures with diameters up to 30 μm. An automatic pipeline was developed to segment the CA, and the spatial distribution of over 200,000 individual corpora amylacea could be investigated. A threefold-or higher-density of CA was detected in the dorsomedial column of the periaqueductal gray (860-4,200 CA count/mm3) than in the superior colliculus (150-340 CA count/mm3). We estimated that about 2% of the CA were located in the immediate vicinity of the vessels or in the peri-vascular space. While CA in the ependymal lining of the cerebral aqueduct was rare, the sub-pial tissue of the anterior and posterior midbrain contained several CA. In the sample with the highest CA density, quantitative maps obtained with MRI revealed high R2* values and a diamagnetic shift in a region which spatially coincided with the CA dense region.
Collapse
Affiliation(s)
- Ju Young Lee
- Graduate Training Centre of Neuroscience, Eberhard Karl's University of Tübingen, Tübingen, Germany
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andreas F. Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Sandro Donato
- Department of Physics and STAR-LAB, University of Calabria, Rende, Italy
- Division of Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, Trieste, Italy
- Division of Trieste, Istituto Nazionale di Fisica Nucleare (INFN), Trieste, Italy
| | | | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Riba M, Romera C, Alsina R, Alsina-Scheer G, Pelegrí C, Vilaplana J, Del Valle J. Analyzing the Virchow pioneering report on brain corpora amylacea: shedding light on recurrent controversies. Brain Struct Funct 2023; 228:1371-1378. [PMID: 37358661 PMCID: PMC10335943 DOI: 10.1007/s00429-023-02664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The first report of corpora amylacea (CA) is attributed to Morgagni, who described them in the prostate in the eighteenth century. Nearly a hundred years later, and following the lead started by Purkinje, Virchow described them in the brain. He made a detailed description of the most useful techniques to visualize them, but he failed to describe the cause of why CA do appear, why they are mainly linked with the elderly, and which is their clinical significance. Although in the last two centuries CA have received little attention, recent data have been able to describe that CA accumulate waste products and that some of them can be found in the cerebrospinal fluid and lymphatic nodes, after being released from the brain. Indeed, CA have been renamed to wasteosomes to underline the waste products they gather and to avoid confusion with the term amyloid used by Virchow, now widely related to certain protein deposits found in the brain. Here, after providing a commented English translation of Virchow's findings, we provide a recent update on these structures and their connection with the glymphatic system insufficiency, for which wasteosomes should be considered a hallmark, and how these bodies could serve as diagnostic or prognostic markers of various brain conditions.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | | | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
10
|
Riba M, del Valle J, Romera C, Alsina R, Molina-Porcel L, Pelegrí C, Vilaplana J. Uncovering tau in wasteosomes (corpora amylacea) of Alzheimer’s disease patients. Front Aging Neurosci 2023; 15:1110425. [PMID: 37065464 PMCID: PMC10101234 DOI: 10.3389/fnagi.2023.1110425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Brain corpora amylacea, recently renamed as wasteosomes, are polyglucosan bodies that appear during aging and some neurodegenerative conditions. They collect waste substances and are part of a brain cleaning mechanism. For decades, studies on their composition have produced inconsistent results and the presence of tau protein in them has been controversial. In this work, we reanalyzed the presence of this protein in wasteosomes and we pointed out a methodological problem when immunolabeling. It is well known that to detect tau it is necessary to perform an antigen retrieval. However, in the case of wasteosomes, an excessive antigen retrieval with boiling dissolves their polyglucosan structure, releases the entrapped proteins and, thus, prevents their detection. After performing an adequate pre-treatment, with an intermediate time of boiling, we observed that some brain wasteosomes from patients with Alzheimer’s disease (AD) contained tau, while we did not detect tau protein in those from non-AD patients. These observations pointed the different composition of wasteosomes depending on the neuropathological condition and reinforce the role of wasteosomes as waste containers.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaume del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- *Correspondence: Carme Pelegrí,
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Jordi Vilaplana,
| |
Collapse
|
11
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|