1
|
Cano-Besquet S, Park M, Berkley N, Wong M, Ashiqueali S, Noureddine S, Gesing A, Schneider A, Mason J, Masternak MM, Dhahbi JM. Gene and transcript expression patterns, coupled with isoform switching and long non-coding RNA dynamics in adipose tissue, underlie the longevity of Ames dwarf mice. GeroScience 2025; 47:1923-1943. [PMID: 39405012 PMCID: PMC11978586 DOI: 10.1007/s11357-024-01383-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 04/09/2025] Open
Abstract
Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Cano-Besquet
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | - Maiyon Park
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | | | - Michelle Wong
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Sarah Noureddine
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Jeffrey Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Joseph M Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA, USA.
| |
Collapse
|
2
|
Balaraman AK, Afzal M, Moglad E, Babu MA, Priya GP, Bansal P, Rajotiya S, Kondapavuluri BK, Kazmi I, Alzarea SI, Goyal K, Ali H. The interplay of p16INK4a and non-coding RNAs: bridging cellular senescence, aging, and cancer. Biogerontology 2025; 26:50. [PMID: 39907830 DOI: 10.1007/s10522-025-10194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
p16INK4a is a crucial tumor suppressor and regulator of cellular senescence, forming a molecular bridge between aging and cancer. Dysregulated p16INK4a expression is linked to both premature aging and cancer progression, where non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) play key roles in modulating its function. These ncRNAs interact with p16INK4a through complex post-transcriptional and epigenetic mechanisms, influencing pathways critical to senescence and tumor suppression. In this review, we explore ncRNAs, including ANRIL, MIR31HG, UCA1, MALAT1, miR-24, miR-30, and miR-141, which collectively regulate p16INK4a expression, promoting or inhibiting pathways associated with cancer and aging. ANRIL and MIR31HG modulate p16INK4a silencing via interactions with polycomb repressive complexes (PRC), while miRNAs such as miR-24 and miR-30 target p16INK4a to influence cellular proliferation and senescence. This regulatory interplay underscores the therapeutic potential of ncRNA-targeted strategies to restore p16INK4a function. We summarize recent studies supporting that ncRNAs that control p16INK4a may be diagnostic biomarkers and therapeutic targets for age-related diseases and cancer.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - G Padma Priya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Benod Kumar Kondapavuluri
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India.
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Fu TE, Zhou Z. Senescent cells as a target for anti-aging interventions: From senolytics to immune therapies. J Transl Int Med 2025; 13:33-47. [PMID: 40115034 PMCID: PMC11921816 DOI: 10.1515/jtim-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Aging and age-related diseases are major drivers of multimorbidity and mortality worldwide. Cellular senescence is a hallmark of aging. The accumulation of senescent cells is causally associated with pathogenesis of various age-associated disorders. Due to their promise for alleviating age-related disorders and extending healthspan, therapeutic strategies targeting senescent cells (senotherapies) as a means to combat aging have received much attention over the past decade. Among the conventionally used approaches, one is the usage of small-molecule compounds to specifically exhibit cytotoxicity toward senescent cells or inhibit deleterious effects of the senescence-associated secretory phenotype (SASP). Alternatively, there are immunotherapies directed at surface antigens specifically upregulated in senescent cells (seno-antigens), including chimeric antigen receptor (CAR) therapies and senolytic vaccines. This review gives an update of the current status in the discovery and development of senolytic therapies, and their translational progress from preclinical to clinical trials. We highlight the current challenges faced by senotherapeutic development in the context of senescence heterogeneity, with the aim of offering novel perspectives for future anti-aging interventions aimed at enhancing healthy longevity.
Collapse
Affiliation(s)
- Tianlu Esther Fu
- Faculty of Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Noureddine S, Schneider A, Strader S, Zhu X, Dhahbi J, Allsopp R, Willcox DC, Donlon TA, Shimabukuro M, Higa M, Suzuki M, Torigoe T, Ashiqueali S, Yadav H, Willcox BJ, Masternak MM. Circulating microRNA profile of long-lived Okinawans identifies novel potential targets for optimizing lifespan and health span. Aging Cell 2024; 23:e14191. [PMID: 38751007 PMCID: PMC11320357 DOI: 10.1111/acel.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Abstract
Nonagenarians and centenarians serve as successful examples of aging and extended longevity, showcasing robust regulation of biological mechanisms and homeostasis. Given that human longevity is a complex field of study that navigates molecular and biological mechanisms influencing aging, we hypothesized that microRNAs, a class of small noncoding RNAs implicated in regulating gene expression at the post-transcriptional level, are differentially regulated in the circulatory system of young, middle-aged, and nonagenarian individuals. We sequenced circulating microRNAs in Okinawan males and females <40, 50-80, and >90 years of age accounting for FOXO3 genetic variations of single nucleotide polymorphism (SNP) rs2802292 (TT - common vs. GT - longevity) and validated the findings through RT-qPCR. We report five microRNAs exclusively upregulated in both male and female nonagenarians with the longevity genotype, play predictive functional roles in TGF-β, FoxO, AMPK, Pi3K-Akt, and MAPK signaling pathways. Our findings suggest that these microRNAs upregulated in nonagenarians may provide novel insight into enhanced lifespan and health span. This discovery warrants further exploration into their roles in human aging and longevity.
Collapse
Affiliation(s)
- Sarah Noureddine
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | | | - Sydney Strader
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Xiang Zhu
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Joseph Dhahbi
- Department of Medical Education, School of MedicineCalifornia University of Science & MedicineColtonCaliforniaUSA
| | - Richard Allsopp
- Institute for Biogenesis Research, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
| | - D. Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Human WelfareOkinawa International UniversityGinowanJapan
| | - Timothy A. Donlon
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Michio Shimabukuro
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Diabetes, Endocrinology and MetabolismFukushima Medical University, School of MedicineFukushimaJapan
| | - Moritake Higa
- Diabetes and Life‐Style Related Disease Center, Tomishiro Central HospitalTomishiroJapan
| | - Makoto Suzuki
- Okinawa Research Center for Longevity ScienceUrasoeJapan
| | - Trevor Torigoe
- Institute for Biogenesis Research, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Sarah Ashiqueali
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Hariom Yadav
- USF Center for Microbiome ResearchMicrobiomes Institute, University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bradley J. Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Geriatric Medicine, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Michal M. Masternak
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
5
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
6
|
Cossu AM, Melisi F, Noviello TMR, Pasquale LS, Grisolia P, Reale C, Bocchetti M, Falco M, Tammaro C, Accardo N, Longo F, Allosso S, Mesolella M, Addeo R, Perri F, Ottaiano A, Ricciardiello F, Amler E, Ambrosino C, Misso G, Ceccarelli M, Caraglia M, Scrima M. MiR-449a antagonizes EMT through IL-6-mediated trans-signaling in laryngeal squamous cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102140. [PMID: 38425711 PMCID: PMC10901858 DOI: 10.1016/j.omtn.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Federica Melisi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Teresa Maria Rosaria Noviello
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Lucia Stefania Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Piera Grisolia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Carla Reale
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Michela Falco
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Chiara Tammaro
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Nunzio Accardo
- Ear, Nose, and Throat Unit, AORN "Antonio Cardarelli", Naples, Italy
| | - Francesco Longo
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Salvatore Allosso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Massimo Mesolella
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Raffaele Addeo
- Medical Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore, Italy
| | - Francesco Perri
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | | | - Evzen Amler
- UCEEB, Czech Technical University, Třinecká 1024, 273 43 Buštěhrad, Czech
| | - Concetta Ambrosino
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele Ceccarelli
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| |
Collapse
|