1
|
Wang F, Li L, Wang X, Mo S, Ai J, Deng J, Li Y, Zhang Y, Li Q, Xiao Y, Li Z. A Cytotoxic T Lymphocyte-Inspiring Microscale System for Cancer Immunotherapy. ACS NANO 2025; 19:16554-16568. [PMID: 40268689 DOI: 10.1021/acsnano.4c19012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Adoptive T cell therapy (ACT) is an emerging cancer immunotherapy undergoing clinical evaluation, showing significant promise in the treatment of solid tumors. However, the clinical translation of ACT is hindered by its time-, labor-, and financial-consuming procedures, heterogeneity of cytotoxic T lymphocytes (CTLs), and immunosuppressive tumor microenvironment. Herein, we have developed a bionic cytotoxic T lymphocyte-inspiring microscale system (CTLiMS) composed of mesoporous silica dioxide microspheres containing membrane-disrupting boron clusters (BICs) and proapoptotic monomethyl auristatin E (MMAE) peptides. The BICs were found to disrupt the integrity of cancer cell membranes and enhance the internalization of MMAE, effectively mimicking the biological functions of perforin and granzymes released by CTLs to destroy cancer cells. As expected, the CTLiMSs demonstrated exceptional in vitro anticancer activity, inducing cancer cell apoptosis and exhibiting strong antiproliferative effects. Notably, CTLiMS treatment was demonstrated to induce immunogenic cell death of cancer cells as a result of Ca2+ and MMAE influx and subsequent production of reactive oxygen species. The animal studies demonstrated that the CTLiMS treatment led to efficient repression of the tumor growth. Furthermore, the CTLiMS administration resulted in favorable antitumor immunotherapeutic effects, as shown by significant inhibition of distant tumors, increased immune cell infiltration, and elevated plasma levels of pro-inflammatory cytokines. This pilot study using CTLiMSs for cancer immunotherapy offers an innovative bionic strategy for the future advancement of adoptive T cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Xueyi Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| | - Shushan Mo
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Jiacong Ai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junyao Deng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yimin Li
- The First Clinical College of Jinan University, Guangzhou 510632, China
| | - Yixin Zhang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Qishan Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| |
Collapse
|
2
|
Zhang B, Wu J, Jiang H, Zhou M. Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy. Cells 2025; 14:320. [PMID: 40072049 PMCID: PMC11899321 DOI: 10.3390/cells14050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T-cell therapy has achieved significant success in the treatment of hematological malignancies. However, this therapy has not yet made breakthroughs in the treatment of solid tumors and still faces issues of resistance and relapse in hematological cancers. A major reason for these problems is the antigenic heterogeneity of tumor tissues. This review outlines the antigenic heterogeneity encountered in CAR-T cell therapy and the corresponding strategies to address it. These strategies include using combination therapy to increase the abundance of target antigens, optimizing the structure of CARs to enhance sensitivity to low-density antigens, developing multi-targeted CAR-T cells, and reprogramming the TME to activate endogenous immunity. These approaches offer new directions for overcoming tumor antigenic heterogeneity in CAR-T cell therapy.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Jiawen Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
- CARsgen Therapeutics, Shanghai 200231, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| |
Collapse
|
3
|
Wang Y, Bo Y, Liu Y, Zhou J, Nguyen D, Baskaran D, Liu Y, Wang H. Metabolic labeling and targeted modulation of adipocytes. Biomater Sci 2025; 13:434-445. [PMID: 39648977 PMCID: PMC11758917 DOI: 10.1039/d4bm01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Adipocytes play a critical role in energy storage and endocrine signaling and are associated with various diseases such as cancer and diabetes. Facile strategies to engineer adipocytes have long been pursued for elucidating adipocyte biology and developing adipocyte-based therapies. Herein, we report metabolic glycan labeling of adipocytes and subsequent targeted modulation of adipocytes via click chemistry. We show that azido tags expressed on the surface of adipocytes can persist for over 4 days. By conjugating dibenzocyclooctyne (DBCO)-cargos onto azido-labeled adipocytes via click chemistry, the cargos can be retained on the adipocyte membrane for over 12 hours. We further show that signaling molecules including adiponectin, calreticulin, mannose-binding lectin 2, and milk fat globule-EGF factor 8 protein can be conjugated to adipocytes to orchestrate their phagocytosis by macrophages. The azido-labeled adipocytes grafted into mice can also mediate targeted conjugation of DBCO-cargos in vivo. This adipocyte labeling and targeting technology will facilitate the development of adipocyte-based therapies and provides a new platform for manipulating the interaction between adipocytes and other types of cells.
Collapse
Affiliation(s)
- Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jiadiao Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel Nguyen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dhyanesh Baskaran
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zhang Y, Xue Y, Gao Y, Zhang Y. Prognostic and predictive value of pathohistological features in gastric cancer and identification of SLITRK4 as a potential biomarker for gastric cancer. Sci Rep 2024; 14:29241. [PMID: 39587240 PMCID: PMC11589652 DOI: 10.1038/s41598-024-80292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this study was to develop a quantitative feature-based model from histopathologic images to assess the prognosis of patients with gastric cancer. Whole slide image (WSI) images of H&E-stained histologic specimens of gastric cancer patients from The Cancer Genome Atlas were included and randomly assigned to training and test groups in a 7:3 ratio. A systematic preprocessing approach was employed as well as a non-overlapping segmentation method that combined patch-level prediction with a multi-instance learning approach to integrate features across the slide images. Subjects were categorized into high- or low-risk groups based on the median risk score derived from the model, and the significance of this stratification was assessed using a log-rank test. In addition, combining transcriptomic data from patients and data from other large cohort studies, we further searched for genes associated with pathological features and their prognostic value. A total of 165 gastric cancer patients were included for model training, and a total of 26 features were integrated through multi-instance learning, with each process generating 11 probabilistic features and 2 predictive labeling features. We applied a 10-fold Lasso-Cox regression model to achieve dimensionality reduction of these features. The predictive accuracy of the model was verified using Kaplan-Meyer (KM) curves for stratification with a consistency index of 0.741 for the training set and 0.585 for the test set. Deep learning-based resultant supervised pathohistological features have the potential for superior prognostic stratification of gastric cancer patients, transforming image pixels into an effective and labor-saving tool to optimize the clinical management of gastric cancer patients. Also, SLITRK4 was identified as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Yuhang Xue
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yongju Gao
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
5
|
Liu N, Zhu XR, Wu CY, Liu YY, Chen MB, Gu JH. PCK1 as a target for cancer therapy: from metabolic reprogramming to immune microenvironment remodeling. Cell Death Discov 2024; 10:478. [PMID: 39578429 PMCID: PMC11584723 DOI: 10.1038/s41420-024-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Recently, changes in metabolites and metabolism-related enzymes related to tumor cell proliferation, metastasis, drug resistance, and immunosuppression have become a research hotspot, and researchers have attempted to determine the clinical correlation between specific molecular lesions and metabolic phenotypes. Convincing evidence shows that metabolic reprogramming is closely related to the proliferation, invasion, metastasis, and poor prognosis of malignant tumors. Therefore, targeting metabolic reprogramming is a new direction for cancer treatment. However, how molecular alterations in tumors contribute to metabolic diversity and unique targeting dependencies remains unclear. A full understanding of the underlying mechanisms of metabolic reprogramming in cancer may lead to better identification of therapeutic targets and the development of therapeutic strategies. Evidence for the importance of PCK1, a phosphoenolpyruvate carboxykinase 1, in tumorigenesis and development is accumulating. PCK1 can regulate cell proliferation and metastasis by remodeling cell metabolism. Additionally, PCK1 has "nonclassical" nonmetabolic functions, involving the regulation of gene expression, angiogenesis, epigenetic modification, and other processes, and has an impact on cell survival, apoptosis, and other biological activities, as well as the remodeling of the tumor immune microenvironment. Herein, we provide a comprehensive overview of the functions of PCK1 under physiological and pathological conditions and suggest that PCK1 is a potential target for cancer therapy. We also propose a future exploration direction for targeting PCK1 for cancer therapy from a clinical perspective. Finally, in view of the collective data, the results of our discussion suggest the potential clinical application of targeted PCK1 therapy in combination with chemotherapy and immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Chang-Ying Wu
- Department of Intensive Care Medicine, Chongqing People's Hospital, Chongqing, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Jin-Hua Gu
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University Kunshan, Kunshan, China.
| |
Collapse
|
6
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res 2024; 14:3032-3054. [PMID: 38615157 PMCID: PMC11445310 DOI: 10.1007/s13346-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Cell-mediated nanoparticle delivery systems (CMNDDs) utilize cells as carriers to deliver the drug-loaded nanoparticles. Unlike the traditional nanoparticle drug delivery approaches, CMNDDs take the advantages of cell characteristics, such as the homing capabilities of stem cells, inflammatory chemotaxis of neutrophils, prolonged blood circulation of red blood cells, and internalization of macrophages. Subsequently, CMNDDs can easily prolong the blood circulation, cross biological barriers, such as the blood-brain barrier and the bone marrow-blood barrier, and rapidly arrive at the diseased areas. Such advantageous properties make CMNDDs promising delivery candidates for precision targeting. In this review, we summarize the recent advances in CMNDDs fabrication and biomedical applications. Specifically, ligand-receptor interactions, non-covalent interactions, covalent interactions, and internalization are commonly applied in constructing CMNDDs in vitro. By hitchhiking cells, such as macrophages, red blood cells, monocytes, neutrophils, and platelets, nanoparticles can be internalized or attached to cells to construct CMNDDs in vivo. Then we highlight the recent application of CMNDDs in treating different diseases, such as cancer, central nervous system disorders, lung diseases, and cardiovascular diseases, with a brief discussion about challenges and future perspectives in the end.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
8
|
Xu Z, Wu Y, Hu J, Mei Z, Zhao Y, Yang K, Shi Y, Xu X. Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy. Heliyon 2024; 10:e38900. [PMID: 39640775 PMCID: PMC11620084 DOI: 10.1016/j.heliyon.2024.e38900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The development of effective cancer treatments is a popular in contemporary medical research. Immunotherapy, the fourth most common cancer treatment method, relies on activating autoimmune function to eradicate tumors and exhibits advantages such as a good curative effect and few side effects. In recent years, tumor vaccines that activate the stimulator of interferon genes (STING) pathway are being actively researched in the field of immunotherapy; however, their application is still limited because of the rapid clearance rate of tumor-related lymph nodes and low efficiency of antigen presentation. The rise of nanomedicine has provided new opportunities for solving these problems. By preparing materials with adjuvant effects nanoparticles, the small size of nanoparticles can be exploited to enable the entry of vaccines into tumor-related lymph nodes to accurately deliver STING agonists and activate the immune response. Based on this, this paper reviews various types of nano-adjuvants based on metals, platinum chemotherapy drugs, camptothecin derivatives, deoxyribonucleic acid, etc. and highlights the transformation prospects of these nano-adjuvants in tumor vaccines to provide a reference for promoting the development of nano-medicine and tumor vaccinology.
Collapse
Affiliation(s)
- Zicong Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yihong Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Junjie Hu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Zhaozhao Mei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yutong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, PR China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
9
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Shi S, Ou X, Liu C, Wen H, Jiang K. Immunoproteasome acted as immunotherapy 'coffee companion' in advanced carcinoma therapy. Front Immunol 2024; 15:1464267. [PMID: 39281672 PMCID: PMC11392738 DOI: 10.3389/fimmu.2024.1464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wen
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Chen C, Yuan P, Zhang Z. Nanomedicine-based cancer immunotherapy: a bibliometric analysis of research progress and prospects. Front Immunol 2024; 15:1446532. [PMID: 39247199 PMCID: PMC11377264 DOI: 10.3389/fimmu.2024.1446532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Despite the increasing number of studies on nanomedicine-based cancer immunotherapy, the overall research trends in this field remain inadequately characterized. This study aims to evaluate the research trends and hotspots in nanomedicine-based cancer immunotherapy through a bibliometric analysis. As of March 31, 2024, relevant publications were retrieved from the Web of Science Core Collection. Analytical tools including VOSviewer, CiteSpace, and an online bibliometric analysis platform were employed. A total of 5,180 publications were analyzed. The study reveals geographical disparities in research output, with China and the United States being the leading contributors. Institutionally, the Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Sichuan University are prominent contributors. Authorship analysis identifies key researchers, with Liu Zhuang being the most prolific author. "ACS Nano" and the "Journal of Controlled Release and Biomaterials" are identified as the leading journals in the field. Frequently occurring keywords include "cancer immunotherapy" and "drug delivery." Emerging frontiers in the field, such as "mRNA vaccine," "sonodynamic therapy," "oral squamous cell carcinoma," "STING pathway,"and "cGAS-STING pathway," are experiencing rapid growth. This study aims to provide new insights to advance scientific research and clinical applications in nanomedicine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfei Yuan
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
12
|
Esmaeili F, Wu YL, Wang Z, Abdrabou A, Juska VB, Zargartalebi H, Flynn CD, Odom TW, Sargent EH, Kelley SO. Spiky Gold Nanoparticles, a Nanoscale Approach to Enhanced Ex Vivo T-Cell Activation. ACS NANO 2024; 18:21554-21564. [PMID: 39079006 DOI: 10.1021/acsnano.4c07306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
While existing synthetic technologies for ex vivo T-cell activation face challenges like suboptimal expansion rates and low effectiveness, artificial antigen-presenting cells (aAPCs) hold great promise for enhanced T-cell based therapies. In particular, gold nanoparticles (AuNPs), known for their biocompatibility, ease of synthesis, and versatile surface chemistry, are strong candidates for use as nanoscale aAPCs. In this study, we developed spiky AuNPs with branched geometries to present activating ligands to primary human T-cells. The special structure of spiky AuNPs enhances biomolecule loading capacity and significantly improves T-cell activation through multivalent binding of costimulatory ligands and receptors. Our spiky AuNPs outperform existing systems including Dynabeads and soluble activators by promoting greater polyclonal expansion of T-cells, boosting sustained cytokine production, and generating highly functional T-cells with reduced exhaustion. In addition, spiky AuNPs effectively activate and expand CD19 CAR-T cells while demonstrating increased in vitro cytotoxicity against target cells using fewer effector cells than Dynabeads. This study underscores the potential of spiky AuNPs as a powerful tool, bringing new opportunities to adoptive cell therapy applications.
Collapse
Affiliation(s)
- Fatemeh Esmaeili
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zongjie Wang
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Abdalla Abdrabou
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Vuslat B Juska
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Tyndall National Institute, University College Cork, Cork T12R5CP, Ireland
| | - Hossein Zargartalebi
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| |
Collapse
|
13
|
Fang CH, Cheng YF, Lin SR, Lai WY, Liao LR, Chiu YL, Lee JM. Establishment of a protocol for rapidly expanding Epstein-Barr-virus-specific cytotoxic T cells with enhanced cytotoxicity. BMC Cancer 2024; 24:980. [PMID: 39118069 PMCID: PMC11312821 DOI: 10.1186/s12885-024-12707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.
Collapse
Affiliation(s)
- Chih-Hao Fang
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Ya Fang Cheng
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Shian-Ren Lin
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Wan-Yu Lai
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Li-Ren Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, No. 121, Sec. 2, Nanya S. Rd., Banqiao Dist., New Taipei City, 220216, Taiwan.
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, 320315, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100233, Taiwan.
| | - Jan-Mou Lee
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan.
| |
Collapse
|
14
|
Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/nano-electroporation for gene therapy: recent advances and future outlook. NANOSCALE 2024; 16:10500-10521. [PMID: 38757536 DOI: 10.1039/d4nr01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
15
|
Shi J, Wu W, Chen D, Liao Z, Sheng T, Wang Y, Yao Y, Wu Q, Liu F, Zhou R, Zhu C, Shen X, Mao Z, Ding Y, Wang W, Dotti G, Sun J, Liang X, Fang W, Zhao P, Li H, Gu Z. Lyophilized lymph nodes for improved delivery of chimeric antigen receptor T cells. NATURE MATERIALS 2024; 23:844-853. [PMID: 38448658 DOI: 10.1038/s41563-024-01825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.
Collapse
Affiliation(s)
- Jiaqi Shi
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyan Liao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Tao Sheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanfang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuejun Yao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ruyi Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaojie Zhu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyuan Shen
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Jinhua Institute, Zhejiang University, Jinhua, China.
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Jinhua Institute, Zhejiang University, Jinhua, China.
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Xu J, Liu W, Fan F, Zhang B, Sun C, Hu Y. Advances in nano-immunotherapy for hematological malignancies. Exp Hematol Oncol 2024; 13:57. [PMID: 38796455 PMCID: PMC11128130 DOI: 10.1186/s40164-024-00525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/18/2024] [Indexed: 05/28/2024] Open
Abstract
Hematological malignancies (HMs) encompass a diverse group of blood neoplasms with significant morbidity and mortality. Immunotherapy has emerged as a validated and crucial treatment modality for patients with HMs. Despite notable advancements having been made in understanding and implementing immunotherapy for HMs over the past decade, several challenges persist. These challenges include immune-related adverse effects, the precise biodistribution and elimination of therapeutic antigens in vivo, immune tolerance of tumors, and immune evasion by tumor cells within the tumor microenvironment (TME). Nanotechnology, with its capacity to manipulate material properties at the nanometer scale, has the potential to tackle these obstacles and revolutionize treatment outcomes by improving various aspects such as drug targeting and stability. The convergence of nanotechnology and immunotherapy has given rise to nano-immunotherapy, a specialized branch of anti-tumor therapy. Nanotechnology has found applications in chimeric antigen receptor T cell (CAR-T) therapy, cancer vaccines, immune checkpoint inhibitors, and other immunotherapeutic strategies for HMs. In this review, we delineate recent developments and discuss current challenges in the field of nano-immunotherapy for HMs, offering novel insights into the potential of nanotechnology-based therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wenqi Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
17
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
18
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Zhang D, Jia N, Hu Z, Keqing Z, Chenxi S, Chunying S, Chen C, Chen W, Hu Y, Ruan Z. Bioinformatics identification of potential biomarkers and therapeutic targets for ischemic stroke and vascular dementia. Exp Gerontol 2024; 187:112374. [PMID: 38320734 DOI: 10.1016/j.exger.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Ischemic stroke and vascular dementia, as common cerebrovascular diseases, with the former causing irreversible neurological damage and the latter causing cognitive and memory impairment, are closely related and have long received widespread attention. Currently, the potential causative genes of these two diseases have yet to be investigated, and effective early diagnostic tools for the diseases have not yet emerged. In this study, we screened new potential biomarkers and analyzed new therapeutic targets for both diseases from the perspective of immune infiltration. Two gene expression profiles on ischemic stroke and vascular dementia were obtained from the NCBI GEO database, and key genes were identified by LASSO regression and SVM-RFE algorithms, and key genes were analyzed by GO and KEGG enrichment. The CIBERSORT algorithm was applied to the gene expression profile species of the two diseases to quantify the 24 subpopulations of immune cells. Moreover, logistic regression modeling analysis was applied to illustrate the stability of the key genes in the diagnosis. Finally, the key genes were validated using RT-PCR assay. A total of 105 intersecting DEGs genes were obtained in the 2 sets of GEO datasets, and bioinformatics functional analysis of the intersecting DEGs genes showed that GO was mainly involved in the purine ribonucleoside triphosphate metabolic process,respiratory chain complex,DNA-binding transcription factor binding and active transmembrane transporter activity. KEGG is mainly involved in the Oxidative phosphorylation, cAMP signaling pathway. The LASSO regression algorithm and SVM-RFE algorithm finally obtained three genes, GAS2L1, ARHGEF40 and PFKFB3, and the logistic regression prediction model determined that the three genes, GAS2L1 (AUC: 0.882), ARHGEF40 (AUC: 0.867) and PFKFB3 (AUC: 0.869), had good diagnostic performance. Meanwhile, the two disease core genes and immune infiltration were closely related, GAS2L1 and PFKFB3 had the highest positive correlation with macrophage M1 (p < 0.001) and the highest negative correlation with mast cell activation (p = 0.0017); ARHGEF40 had the highest positive correlation with macrophage M1 and B cells naive (p < 0.001), the highest negative correlation with B cell memory highest correlation (p = 0.0047). RT-PCR results showed that the relative mRNA expression levels of GAS2L1, ARHGEF40, and PFKFB3 were significantly elevated in the populations of both disease groups (p < 0.05). Immune infiltration-based models can be used to predict the diagnosis of patients with ischemic stroke and vascular dementia and provide a new perspective on the early diagnosis and treatment of both diseases.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi university of chinese medicine Nanning, China
| | - Ni Jia
- Shaanxi University of Traditional Chinese Medicine Xianyang, China
| | - Zhihan Hu
- Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Zhou Keqing
- Guangxi university of chinese medicine Nanning, China
| | - Song Chenxi
- Guangxi university of chinese medicine Nanning, China
| | - Sun Chunying
- Guangxi university of chinese medicine Nanning, China
| | - Canrong Chen
- Guangxi university of chinese medicine Nanning, China
| | - Wei Chen
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China
| | - Yueqiang Hu
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China.
| | - Ziyun Ruan
- Guangxi university of chinese medicine Nanning, China
| |
Collapse
|
20
|
Li Y, Li W, Chen J, Qiu S, Liu Y, Xu L, Tian T, Li JP. Deciphering single-cell protein secretion and gene expressions by constructing cell-antibody conjugates. Bioorg Chem 2024; 143:106987. [PMID: 38039927 DOI: 10.1016/j.bioorg.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
Secreted proteins play critical roles in regulating immune responses, exerting cytotoxic effects on tumor cells, promoting inflammatory processes, and influencing cellular metabolism. Deciphering the intricate relationship between the heterogeneity of secreted proteins and their transcriptional states is pivotal in the study of cellular heterogeneity. Here we proposed a cell-antibody conjugate-based sequencing methodology (Cellab-seq) for joint characterization of secreted proteins and transcriptome. Cellab-seq utilizes a chemoenzymatic strategy to construct cell-antibody conjugates, which enables the capture of secreted proteins and their signal transduction with the incorporation of barcode detection antibodies. We applied Cellab-seq to investigate how gene expression influences the activity of secreted proteins in NK cells. Altogether, this strategy facilitates a nuanced understanding of cellular dynamics under diverse physiological conditions, ultimately contributing to the prevention, diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yachao Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiashang Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yilong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Lingjie Xu
- Vazyme Biotech, Red Maple Hi-tech Industry Park, Kechuang Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
21
|
Zhao J, Wei C, Wang S, Zhang Y, Wang W, Zhao D, Wang Z, Zhou Z, Bai J, Zhang W, Zhou D. The intrinsic defects of T cells impact the efficacy of CAR-T therapy in patients with diffuse large B-cell lymphoma. Blood Cancer J 2023; 13:186. [PMID: 38097551 PMCID: PMC10721638 DOI: 10.1038/s41408-023-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
CAR-T cell therapy did not achieve the desired efficacy in some patients with diffuse large B-cell lymphoma (DLBCL). We conducted single-cell RNA and TCR sequencing as well as methylation chip profiling of peripheral blood samples in DLBCL patients. Patients who achieved complete remission (CR) showed an upward trend in T-cell levels, especially CD8-effector T cells. The responders exhibited T-cell clone expansion, more active T-cell transformation, and frequent cell communication. Highly expressed genes in the CR group were enriched in functions like leukocyte-mediated cytotoxicity and activation of immune response, while the non-CR group was enriched in pathways related to DNA damage and P53-mediated intrinsic apoptotic. More differentially methylated probes (DMPs) were identified in the baseline of the non-CR group (779 vs 350). GSEA analysis revealed that the genes annotated by DMPs were associated with cellular immune functions in T cells, including the generation of chemokines, leukocyte-mediated cytotoxicity, and cell-killing functions. The genes with low expression in the non-CR group exhibited a high methylation status. There is heterogeneity in the cellular, molecular, and epigenetic characteristics of host T cells in patients with different clinical outcomes. Intrinsic defects in T cells are important factors leading to poor efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Jinrong Zhao
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Chong Wei
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shuqing Wang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Danqing Zhao
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zi Wang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhipeng Zhou
- GenePlus-Beijing Institute, Beijing, 102206, China
| | - Jing Bai
- GenePlus-Beijing Institute, Beijing, 102206, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
22
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
23
|
Heng X, Shan F, Yang H, Hu J, Feng R, Tian W, Chen G, Chen H. Glycopolymers With On/Off Anchors: Confinement Effect on Regulating Dendritic Cells. Adv Healthc Mater 2023; 12:e2301536. [PMID: 37590030 DOI: 10.1002/adhm.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Insufficient activation or over-activation of T cells due to the dendritic cells (DCs) state can cause negative effects on immunotherapy, making it crucial for DCs to maintain different states in different treatments. Polysaccharides are one of the most studied substances to promote DCs maturation. However, in many methods, optimizing the spatial dimension of the interaction between polysaccharides and cells is often overlooked. Therefore, in this study, a new strategy from the perspective of spatial dimension is proposed to regulate the efficacy of polysaccharides in promoting DCs maturation. An anchoring molecule (DMA) is introduced to existing glycopolymers for the confinement effect, and the effect can be turned off by oxidation of DMA. Among the prepared on-confined (PMD2 ), off-confined (PMD2 -O), and norm (PM2 ) glycopolymers, PMD2 and PMD2 -O show the best and worst results, respectively, in terms of the amount of binding to DCs and the effect on promoting DCs maturation. This sufficiently shows that the turn-on and off of confinement effect can regulate the maturation of DCs by polysaccharides. Based on the all-atom molecular dynamics (MD) simulation, the mechanism of difference in the confinement effect is explained. This simple method can also be used to regulate other molecule-cell interactions to guide cell behavior.
Collapse
Affiliation(s)
- Xingyu Heng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Fangjian Shan
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - He Yang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Hu
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Ruyan Feng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wende Tian
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Gaojian Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Hong Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
24
|
Abstract
T cells play critical roles in the immune system, including in responses to cancer, autoimmunity, and tissue regeneration. T cells arise from common lymphoid progenitors (CLPs) that differentiate from hematopoietic stem cells in the bone marrow. CLPs then traffic to the thymus, where they undergo thymopoiesis through a number of selection steps, resulting in mature single positive naive CD4 helper or CD8 cytotoxic T cells. Naive T cells are home to secondary lymphoid organs like lymph nodes and are primed by antigen-presenting cells, which scavenge for both foreign and self-antigens. Effector T cell function is multifaceted, including direct target cell lysis and secretion of cytokines, which regulate the functions of other immune cells (refer to "Graphical Abstract"). This review will discuss T cell development and function, from the development of lymphoid progenitors in the bone marrow to principles that govern T cell effector function and dysfunction, specifically within the context of cancer.
Collapse
Affiliation(s)
- Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Favour O. Obuseh
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|