1
|
Fougeroux C, Hagen SH, Goksøyr L, Aves KL, Okholm AK, Morin C, Lokras AG, Baghel SS, Foged C, van de Vegte-Bolmer M, van Gemert GJ, Jore MM, Vidal-Calvo EE, Gustavsson T, Salanti A, Theander TG, Nielsen MA, de Jongh WA, Sander Bertelsen AF. A modular mRNA vaccine platform encoding antigen-presenting capsid virus-like particles enhances the immunogenicity of the malaria antigen Pfs25. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01889-1. [PMID: 40369344 DOI: 10.1038/s41565-025-01889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/10/2025] [Indexed: 05/16/2025]
Abstract
The COVID-19 pandemic has emphasized the potential of mRNA vaccines in fighting pandemics, owing to their rapid development, strong immunogenicity and adaptability. However, a drawback is their dose-limiting reactogenicity and inability to generate durable humoral immunity. Here we introduce a modular nucleotide vaccine platform combining the advantages of genetic and capsid virus-like-particle-based vaccines. This platform allows for the display of various antigens on different capsid virus-like particles, improving the magnitude, quality and longevity of the vaccine-induced immune responses. We applied this technology to enhance the immunogenicity of the Pfs25 antigen. Immunization with lipid-nanoparticle-formulated mRNA encoding Pfs25 capsid virus-like particles resulted in higher and potentially more durable anti-Pfs25 antibody responses, along with enhanced functional activity, compared with an mRNA vaccine encoding soluble Pfs25. By improving both humoral and cellular immune responses, this approach may reduce the dose and number of administrations required for effective protection. As a result, it can improve the feasibility of both DNA- and mRNA-based vaccines targeting pandemic and endemic infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Kara-Lee Aves
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kathrine Okholm
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Candice Morin
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Thor Grundtvig Theander
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Agertoug Nielsen
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Adam Frederik Sander Bertelsen
- AdaptVac Aps, Copenhagen, Denmark.
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Li Y, Zhang Y. Flexing protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01560-2. [PMID: 40355748 DOI: 10.1038/s41594-025-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Yang Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yang Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Khmelinskaia A, Bethel NP, Fatehi F, Mallik BB, Antanasijevic A, Borst AJ, Lai SH, Chim HY, Wang JY'J, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01490-z. [PMID: 40011747 DOI: 10.1038/s41594-025-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany.
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
| | - Bhoomika Basu Mallik
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Szu-Hsueh Lai
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ho Yeung Chim
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jing Yang 'John' Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shane Caldwell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mengyu Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Andrew B Ward
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Hendricks GG, Grigoryan L, Navarro MJ, Catanzaro NJ, Hubbard ML, Powers JM, Mattocks M, Treichel C, Walls AC, Lee J, Ellis D, Wang JY(J, Cheng S, Miranda MC, Valdez A, Chao CW, Chan S, Men C, Johnson MR, Hui H, Wu SY, Lujan V, Muramatsu H, Lin PJ, Sung MM, Tam YK, Leaf EM, Pardi N, Baric RS, Pulendran B, Veesler D, Schäfer A, King NP. Computationally designed mRNA-launched protein nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604655. [PMID: 39091730 PMCID: PMC11291046 DOI: 10.1101/2024.07.22.604655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic1-6. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses7-10, while mRNA vaccines can be rapidly manufactured11 and elicit antigen-specific CD4 and CD8 T cells12,13. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells14 to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD)15, formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.
Collapse
Affiliation(s)
- Grace G. Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L. Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jing Yang (John) Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cara W. Chao
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Christine Men
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Max R. Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Elizabeth M. Leaf
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
5
|
Vázquez Torres S, Leung PJY, Venkatesh P, Lutz ID, Hink F, Huynh HH, Becker J, Yeh AHW, Juergens D, Bennett NR, Hoofnagle AN, Huang E, MacCoss MJ, Expòsit M, Lee GR, Bera AK, Kang A, De La Cruz J, Levine PM, Li X, Lamb M, Gerben SR, Murray A, Heine P, Korkmaz EN, Nivala J, Stewart L, Watson JL, Rogers JM, Baker D. De novo design of high-affinity binders of bioactive helical peptides. Nature 2024; 626:435-442. [PMID: 38109936 PMCID: PMC10849960 DOI: 10.1038/s41586-023-06953-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Many peptide hormones form an α-helix on binding their receptors1-4, and sensitive methods for their detection could contribute to better clinical management of disease5. De novo protein design can now generate binders with high affinity and specificity to structured proteins6,7. However, the design of interactions between proteins and short peptides with helical propensity is an unmet challenge. Here we describe parametric generation and deep learning-based methods for designing proteins to address this challenge. We show that by extending RFdiffusion8 to enable binder design to flexible targets, and to refining input structure models by successive noising and denoising (partial diffusion), picomolar-affinity binders can be generated to helical peptide targets by either refining designs generated with other methods, or completely de novo starting from random noise distributions without any subsequent experimental optimization. The RFdiffusion designs enable the enrichment and subsequent detection of parathyroid hormone and glucagon by mass spectrometry, and the construction of bioluminescence-based protein biosensors. The ability to design binders to conformationally variable targets, and to optimize by partial diffusion both natural and designed proteins, should be broadly useful.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Isaac D Lutz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Fabian Hink
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Huu-Hien Huynh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andy Hsien-Wei Yeh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Marc Expòsit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joshmyn De La Cruz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul M Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Piper Heine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elif Nihal Korkmaz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Khwaja E, Song YS, Agarunov A, Huang B. CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:4899-4914. [PMID: 39021511 PMCID: PMC11254339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We present CELL-E 2, a novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and vice versa). Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E, not only capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling de novo protein design. We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals (NLS). Results and interactive demos are featured at https://bohuanglab.github.io/CELL-E_2/.
Collapse
Affiliation(s)
- Emaad Khwaja
- UC Berkeley - UCSF Joint Bioengineering Graduate Program
- Computer Science Division, UC Berkeley, CA 94720
| | - Yun S Song
- Department of Statistics, UC Berkeley, CA 94720
- Computer Science Division, UC Berkeley, CA 94720
| | - Aaron Agarunov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 10065
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158
| |
Collapse
|
7
|
Li Z, Wang S, Nattermann U, Bera AK, Borst AJ, Yaman MY, Bick MJ, Yang EC, Sheffler W, Lee B, Seifert S, Hura GL, Nguyen H, Kang A, Dalal R, Lubner JM, Hsia Y, Haddox H, Courbet A, Dowling Q, Miranda M, Favor A, Etemadi A, Edman NI, Yang W, Weidle C, Sankaran B, Negahdari B, Ross MB, Ginger DS, Baker D. Accurate computational design of three-dimensional protein crystals. NATURE MATERIALS 2023; 22:1556-1563. [PMID: 37845322 DOI: 10.1038/s41563-023-01683-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Radhika Dalal
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joshua M Lubner
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hugh Haddox
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- HHMI, University of Washington, Seattle, WA, USA
| | - Quinton Dowling
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Marcos Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew Favor
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Ali Etemadi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Babak Negahdari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Michael B Ross
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
9
|
Toth EA, Andrianov AK, Fuerst TR. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev Med Virol 2023; 33:e2474. [PMID: 37565536 PMCID: PMC10626635 DOI: 10.1002/rmv.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.
Collapse
Affiliation(s)
- Eric A. Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander K. Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|