1
|
Shapira G, Karmon G, Hacohen-Kleiman G, Ganaiem M, Shazman S, Theotokis P, Grigoriadis N, Shomron N, Gozes I. ADNP is essential for sex-dependent hippocampal neurogenesis, through male unfolded protein response and female mitochondrial gene regulation. Mol Psychiatry 2025; 30:2696-2706. [PMID: 39715923 DOI: 10.1038/s41380-024-02879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Essential for brain formation and protective against tauopathy, activity-dependent neuroprotective protein (ADNP) is critical for neurogenesis and cognitive functions, while regulating steroid hormone biogenesis. As such, de novo mutations in ADNP lead to syndromic autism and somatic ADNP mutations parallel Alzheimer's disease progression. Furthermore, clinical trials with the ADNP fragment NAP (the investigational drug davunetide) showed efficacy in women suffering from the tauopathy progressive supranuclear palsy and differentially boosted memory in men (spatial) and women (verbal), exhibiting prodromal Alzheimer's disease. While autism is more prevalent in boys and Alzheimer's disease in women, both involve impaired neurogenesis. Here, we asked whether ADNP sex-dependently regulates neurogenesis. Using bromodeoxyuridine (BrdU) as a marker of neurogenesis, we identified two-fold higher labeling in the hippocampal sub-ventricular zone of ADNP-intact male versus female mice. Adnp haplo-insufficient (Adnp+/-) mice or mice CRSIPR/Cas9-edited to present the most prevalent neurodevelopmental ADNP syndrome mutation, p.Tyr718* (Tyr) showed dramatic reductions in male BrdU incorporation, resulting in mutated females presenting higher labeling than males. Treatment with NAP compensated for the male reduction of BrdU labeling. Mechanistically, hippocampal RNAseq revealed male-specific Tyr down-regulation of endoplasmic reticulum unfolded protein response genes critical for sex-dependent organogenesis. Newly discovered mitochondrial accessibility of ADNP was inhibited by the Tyr718* mutation further revealing female-specific Tyr downregulation of mitochondrial ATP6. NAP moderated much of the differential expression caused by p.Tyr718*, accompanied by the down-regulation of neurotoxic, pro-inflammatory and pro-apoptotic genes. Thus, ADNP is a key regulator of sex-dependent neurogenesis that acts by controlling canonical pathways, with NAP compensating for fundamental ADNP deficiencies, striding toward clinical development targeting the ADNP syndrome and related neurodevelopmental/neurodegenerative diseases.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gidon Karmon
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Hacohen-Kleiman
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maram Ganaiem
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, 4353701, Israel
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
2
|
Lipshutz SE, Hibbins MS, Bentz AB, Buechlein AM, Empson TA, George EM, Hauber ME, Rusch DB, Schelsky WM, Thomas QK, Torneo SJ, Turner AM, Wolf SE, Woodruff MJ, Hahn MW, Rosvall KA. Repeated behavioural evolution is associated with convergence of gene expression in cavity-nesting songbirds. Nat Ecol Evol 2025; 9:845-856. [PMID: 40295778 DOI: 10.1038/s41559-025-02675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
Uncovering the genomic bases of phenotypic adaptation is a major goal in biology, but this has been hard to achieve for complex behavioural traits. Here we leverage the repeated, independent evolution of obligate cavity nesting in birds to test the hypothesis that pressure to compete for a limited breeding resource has facilitated convergent evolution in behaviour, hormones and gene expression. We used an integrative approach, combining aggression assays in the field, testosterone measures and transcriptome-wide analyses of the brain in wild-captured females and males. Our experimental design compared species pairs across five avian families, each including one obligate cavity-nesting species and a related species with a more flexible nest strategy. We find behavioural convergence, with higher levels of territorial aggression in obligate cavity nesters, particularly among females. Across species, levels of testosterone in circulation were not associated with nest strategy nor aggression. Phylogenetic analyses of individual genes and co-regulated gene networks revealed more shared patterns of brain gene expression than expected by drift, although the scope of convergent gene expression evolution was limited to a small percentage of the genome. When comparing our results to other studies that did not use phylogenetic methods, we suggest that accounting for shared evolutionary history may reduce the number of genes inferred as convergently evolving. Altogether, we find that behavioural convergence in response to shared ecological pressures is associated with largely independent evolution of gene expression across different avian families, punctuated by a narrow set of convergently evolving genes.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
- Department of Biology, Duke University, Durham, NC, USA.
| | - Mark S Hibbins
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Tara A Empson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Advanced Science Research Center and Programs in Biology and in Psychology, Graduate Center of the City University of New York, New York, NY, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Quinn K Thomas
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samuel J Torneo
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Abbigail M Turner
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, IN, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
3
|
Sun X, Wang C, Li S, Liu X, Li Y, Wang Y, Niu Y, Ren Z, Yang X, Yang X, Liu Y. Folic acid alleviates the negative effects of dexamethasone induced stress on production performance in Hyline Brown laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:54-65. [PMID: 39949729 PMCID: PMC11821403 DOI: 10.1016/j.aninu.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025]
Abstract
Multiple stressors are believed to deteriorate production performance and cause substantial economic losses in commercial poultry farming. Folic acid (FA) is an antioxidant compound that can improve oocyte function and regulate gut microbiota composition. The current study was conducted to investigate the role of FA in alleviating stress and improving production performance. Sixty Hyline Brown laying hens at 21 weeks of age were randomly divided into three groups, with 10 replicates in each group and each replicate containing two chickens. Each group received basic diet and saline injection (Con group), basic diet with dexamethasone (DXM) injection (DXM group), or basic diet supplemented with FA (13 mg/kg in the premix) with DXM injection (FA group). The feeding trial lasted five weeks. Birds in the DXM and FA groups receiving subcutaneous DXM injections at a dosage of 4.50 mg/kg per day during the first seven days of the trial. Results showed that the levels of corticosterone, triglyceride, total cholesterol, and malondialdehyde in serum were significantly increased in the DXM group (P < 0.05), while the concentrations of FA and 5-methyltetrahydrofolate were decreased in the DXM group (P < 0.05). Laying hens in the DXM group had lower laying rates and egg quality, including egg weight, eggshell thickness, eggshell strength, albumen height, and Haugh units (P < 0.05). Conversely, FA alleviated these negative impacts. Through transcriptome analysis, a total of 247 and 151 differentially expressed genes were identified among the three groups, and 32 overlapped genes were further identified. Moreover, 44 and 59 differential metabolites were influenced by DXM and FA, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment from the transcriptome and metabolomics showed that the reduced production performance may be due to the disturbance of oocyte production, calcium metabolism, and oxidative stress. Analysis of 16S rRNA gene amplicon sequences revealed the differential microbial composition and potential functional changes among the different groups. LEfSe analysis showed that Mucispirillum and Nautella were the predominant bacteria in the DXM group, while Clostridium was the predominant bacteria in the FA group. Functional prediction demonstrated that stressors enhanced fatty acid biosynthesis, while betaine biosynthesis and retinol metabolism were elevated in the FA group. Dietary FA reversed the elevated levels of bile acids (BA), including cholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid (P < 0.05). The DXM group showed an overall decrease in short-chain fatty acids (SCFA), but FA restored the concentrations of acetic acid, propionic acid, and isobutyric acid (P < 0.05). In conclusion, this study reveals that dietary FA can alleviate the degradation of production performance caused by stress through improving circulating antioxidant capacity, maintaining intestinal microbiota homeostasis, and regulating SCFA and BA biosynthesis. Thus, highlighting the prominent role of gut microbe-host interactions in alleviating multi-stresses.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sijing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Ohba Y, Motohashi M, Arita M. Characterization of UGT8 as a monogalactosyl diacylglycerol synthase in mammals. J Biochem 2025; 177:141-152. [PMID: 39658193 PMCID: PMC11795506 DOI: 10.1093/jb/mvae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Monogalactosyl diacylglycerol (MGDG) is a major membrane lipid component in plants and is crucial for proper thylakoid functioning. However, MGDG in mammals has not received much attention, partly because of its relative scarcity in mammalian tissues. In addition, the biosynthetic pathway of MGDG in mammals has not been thoroughly analysed, although some reports have suggested that UGT8, a ceramide galactosyltransferase, has the potential to catalyse MGDG biosynthesis. Here, we successfully captured the endogenous levels of MGDG in HeLa cells using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS)-based lipidomics. Cellular MGDG was completely depleted in CRISPR/Cas9-mediated UGT8 knockout (KO) HeLa cells. Transient overexpression of UGT8 enhanced MGDG production in HeLa cells, and the corresponding cell lysates displayed MGDG biosynthetic activity in vitro. Site-directed mutagenesis revealed that His358 within the UGT signature sequence was important for its activity. UGT8 was localized in the endoplasmic reticulum and activation of the unfolded protein response by membrane lipid saturation was impaired in UGT8 KO cells. These results demonstrate that UGT8 is an MGDG synthase in mammals and that UGT8 regulates membrane lipid saturation signals in cells.
Collapse
Affiliation(s)
- Yohsuke Ohba
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mizuki Motohashi
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Ninagawa S, Matsuo M, Ying D, Oshita S, Aso S, Matsushita K, Taniguchi M, Fueki A, Yamashiro M, Sugasawa K, Saito S, Imami K, Kizuka Y, Sakuma T, Yamamoto T, Yagi H, Kato K, Mori K. UGGT1-mediated reglucosylation of N-glycan competes with ER-associated degradation of unstable and misfolded glycoproteins. eLife 2024; 12:RP93117. [PMID: 39654396 PMCID: PMC11630818 DOI: 10.7554/elife.93117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Masaki Matsuo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Deng Ying
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Shuichiro Oshita
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Shinya Aso
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Mai Taniguchi
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Akane Fueki
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Moe Yamashiro
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Graduate School of Science, Kobe UniversityKobeJapan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yasuhiko Kizuka
- Laboratory of Glycobiochemistry, Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- Institute for Molecular Science (IMS), National Institutes of Natural SciencesOkazakiJapan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
- Institute for Advanced Study, Kyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Wang C, Liu X, Sun X, Li Y, Yang X, Liu Y. Dietary betaine supplementation improved egg quality and gut microbes of laying hens under dexamethasone-induced oxidative stress. Poult Sci 2024; 103:104178. [PMID: 39154612 PMCID: PMC11381779 DOI: 10.1016/j.psj.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
Oxidative stress is a frequent concern in the breeding of laying hens, and limit the healthy development of poultry. Dexamethasone (DXM) has been demonstrated to induce oxidative stress. Conversely, betaine is an alkaloid with a potent antioxidant activity. The study was designed to investigate the ameliorative effect of betaine on DXM-induced oxidative stress in laying hens. The results revealed that DXM treatment significantly decreased laying rate, shell strength, albumen height, Haugh unit, egg weight, folk weight and albumen weight, alongside increased malondialdehyde (MDA) and decreased total antioxidant capacity (T-AOC) in serum and liver (P < 0.05). In contrast, dietary betaine addition reversed those parameters mentioned above (P < 0.05). Hepatic RNA-seq analysis showed that there existed 110 up- and 88 down-regulated genes in DXM group when compared with the control. Meanwhile there were 117 upregulation and 169 downregulation genes in BT group when compared with DXM group. Besides, we found that dietary betaine addition significantly down-regulated cell adhesion molecules, glycerolipid metabolism and glycolysis gluconeogenesis pathways. In addition, a total of 44 and 94 differential metabolites were identified respectively from Con vs. DXM and DXM vs BT. More importantly, dietary betaine addition significantly increased the levels of pantothenic acid, gamma-Aminobutyric acid, equol and choline, all of which were related to antioxidant and anti-inflammatory properties. Furthermore, gut microbiota analysis indicated that the Chao and Observed_species indexes were remarkably higher in BT group (P<0.05). Heatmap analysis revealed that Subdoligranulum, Prevotella, Blautia, YRC22, Bacteroides, Ruminococcus and Coprococcus were notably restored in BT group (P<0.05). Taken together, our findings collectively illustrate that dietary betaine addition could attenuate DXM-induced oxidative stress, improve egg quality and gut microbes of laying hens.
Collapse
Affiliation(s)
- Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Ou Y, Guo Y, Wang H, Guo Z, Zheng B. Porphyra haitanensis glycoprotein regulates glucose homeostasis: targeting the liver. Food Funct 2024; 15:7491-7508. [PMID: 38916282 DOI: 10.1039/d4fo01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In this study, we investigated the effects of glycoprotein (PG)-mediated regulation of Porphyra haitanensis on liver glucose metabolism in hyperglycemic mouse models, and sought to establish the underlying mechanism, as determined by the changes in liver gene expression and metabolic profiles. The results showed that 30-300 mg kg-1 PG upregulated the expression of the liver genes Ins1, Ins2, Insr, Gys2, Gpi1, Gck, and downregulated the expression of G6pc, G6pc2, and G6pc3, in a concentration-dependent manner. 300 mg kg-1 PG downregulated the concentrations of glucose-related metabolites in the liver, but upregulated lactic acid, 2-aminoacetic acid, and glucose-1-phosphate concentrations. It was assumed that PG regulated liver glucose metabolism by enriching insulin secretion, glycolysis/gluconeogenesis, and the AMPK signaling pathway, and promoting insulin secretion, glycogen synthesis, and glycolysis. Our findings supported the development of P. haitanensis and its glycoproteins as novel natural antidiabetic compounds that regulated blood glucose homeostasis.
Collapse
Affiliation(s)
- Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Yuehong Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Haoyu Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
8
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
9
|
Ma M, Cheng Y, Hou X, Li Z, Wang M, Ma B, Cheng Q, Ding Z, Feng H. Serum biomarkers in patients with drug-resistant epilepsy: a proteomics-based analysis. Front Neurol 2024; 15:1383023. [PMID: 38585359 PMCID: PMC10995353 DOI: 10.3389/fneur.2024.1383023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the serum biomarkers in patients with drug-resistant epilepsy (DRE). Methods A total of 9 DRE patients and 9 controls were enrolled. Serum from DRE patients was prospectively collected and analyzed for potential serum biomarkers using TMT18-labeled proteomics. After fine quality control, bioinformatics analysis was conducted to find differentially expressed proteins. Pathway enrichment analysis identified some biological features shared by differential proteins. Protein-protein interaction (PPI) network analysis was further performed to discover the core proteins. Results A total of 117 serum differential proteins were found in our study, of which 44 were revised upwards and 73 downwards. The up-regulated proteins mainly include UGGT2, PDIA4, SEMG1, KIAA1191, CCT7 etc. and the down-regulated proteins mainly include ROR1, NIF3L1, ITIH4, CFP, COL11A2 etc. Pathway enrichment analysis identified that the upregulated proteins were mainly enriched in processes such as immune response, extracellular exosome, serine-type endopeptidase activity and complement and coagulation cascades, and the down-regulated proteins were enriched in signal transduction, extracellular exosome, zinc/calcium ion binding and metabolic pathways. PPI network analysis revealed that the core proteins nodes include PRDX6, CAT, PRDX2, SOD1, PARK7, GSR, TXN, ANXA1, HINT1, and S100A8 etc. Conclusion The discovery of these differential proteins enriched our understanding of serum biomarkers in patients with DRE and potentially provides guidance for future targeted therapy.
Collapse
Affiliation(s)
- Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ying Cheng
- Suzhou Jinchang Street Bailian Community Health Service Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xiaoxia Hou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhisen Li
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meixia Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Bodun Ma
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Osawa T, Fujikawa K, Shimamoto K. Structures, functions, and syntheses of glycero-glycophospholipids. Front Chem 2024; 12:1353688. [PMID: 38389730 PMCID: PMC10881803 DOI: 10.3389/fchem.2024.1353688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Biological membranes consist of integral and peripheral protein-associated lipid bilayers. Although constituent lipids vary among cells, membrane lipids are mainly classified as phospholipids, glycolipids, and sterols. Phospholipids are further divided into glycerophospholipids and sphingophospholipids, whereas glycolipids are further classified as glyceroglycolipids and sphingoglycolipids. Both glycerophospholipids and glyceroglycolipids contain diacylglycerol as the common backbone, but their head groups differ. Most glycerolipids have polar head groups containing phosphate esters or sugar moieties. However, trace components termed glycero-glycophospholipids, each possessing both a phosphate ester and a sugar moiety, exist in membranes. Recently, the unique biological activities of glycero-glycophospholipids have attracted considerable attention. In this review, we describe the structure, distribution, function, biosynthesis, and chemical synthetic approaches of representative glycero-glycophospholipids-phosphatidylglucoside (PtdGlc) and enterobacterial common antigen (ECA). In addition, we introduce our recent studies on the rare glycero-glyco"pyrophospho"lipid, membrane protein integrase (MPIase), which is involved in protein translocation across biomembranes.
Collapse
Affiliation(s)
- Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Exogenous Melatonin Alleviates Atrazine-Induced Glucose Metabolism Disorders in Mice Liver via Suppressing Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:742-751. [PMID: 38111124 DOI: 10.1021/acs.jafc.3c06441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide that has toxic effects on animals. Melatonin (MLT) is a natural hormone with strong antioxidant properties. However, the effect of MLT on the glucose metabolism disorder caused by ATZ is still unclear. Mice were divided into four groups randomly and given 21 days of gavage: blank control group (Con), 5 mg/kg MLT group (MLT), 170 mg/kg ATZ group (ATZ), and 170 mg/kg ATZ and 5 mg/kg MLT group (ATZ + MLT). The results show that ATZ alters mRNA levels of metabolic enzymes related to glycogen synthesis and glycolysis and increased metabolites (glycogen, lactate, and pyruvate). ATZ causes abnormalities in glucose metabolism in mouse liver, interfering with glycemia regulation ability. MLT can regulate the endoplasmic reticulum to respond to disordered glucose metabolism in mice liver. This study suggested that MLT has the power to alleviate the ATZ-induced glycogen overdeposition and glycolytic deficit.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
12
|
Zhu F, Lu X, Jiang Y, Wang D, Pan L, Jia C, Zhang L, Xie Y, Zhao M, Liu H, Wang M, Wang T, Liu H, Li J. Proteomics reveals the underlying mechanism by which the first uneven division affects embryonic development in pig. Theriogenology 2023; 210:42-52. [PMID: 37473595 DOI: 10.1016/j.theriogenology.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
One of the most typical abnormal cleavage patterns during early embryonic development is uneven division, but the first uneven division of pig zygote is common. Uneven division results in different daughter cell sizes and an uneven distribution of organelles such as lipid droplet, mitochondria, but the developmental capacity of daughter cells and proteomic changes of daughter cells are still unclear. Therefore, the developmental ability and proteomic quantification were investigated on blastomeres from even division (ED) or uneven division (UD) embryos at 2-cell stage in the present study. Firstly, the developmental ability was affected by the blastomeric size, when compared with medium blastomeres (MBs), the large blastomeres (LBs) with the higher cleavage rate but the small blastomeres (SBs) with the lower rate was observed. Subsequently, proteomic analysis was performed on blastomeres of LBs, MBs and SBs, a total of 109 DEPs were detected, which were involved in protein metabolism and processing, energy metabolism and ribosome. In particular, DEPs in LBs vs. SBs were focused on RNA binding and actin cytoskeletal tissue. Two protein-dense networks associated with RNA binding and cytoskeleton were revealed by further protein-protein interaction (PPI) analysis of DEPs in LBs vs. SBs, that DDX1 related to RNA binding and ACTB related to cytoskeleton were confirmed in UD embryos. Therefore, a briefly information of DEPs in blastomeres of 2-cell stage pig embryos was described in the present study, and it further confirmed that the formation of uneven division of the first cell cycle of pig embryos might be controlled by the cytoskeleton; the developmental capacity of daughter cells might be affected by the energy metabolism, RNA binding and ribosome, and further account for the developmental potential of the whole embryo.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Xinyue Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Linqing Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Lin Zhang
- Jiangsu Yangyu Ecological Agriculture Co., Ltd, Taixing, 225400, China
| | - Yan Xie
- Taixing Animal Husbandry and Veterinary Center, Taixing, 225400, China
| | - Mingyue Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210018, China.
| |
Collapse
|
13
|
Shimai R, Hanafusa K, Nakayama H, Oshima E, Kato M, Kano K, Matsuo I, Miyazaki T, Tokano T, Hirabayashi Y, Iwabuchi K, Minamino T. Lysophosphatidylglucoside/GPR55 signaling promotes foam cell formation in human M2c macrophages. Sci Rep 2023; 13:12740. [PMID: 37544935 PMCID: PMC10404585 DOI: 10.1038/s41598-023-39904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023] Open
Abstract
Atherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment. Excessive uptake of oxidized low-density lipoprotein causes conversion of macrophages to foam cells, and consequent progression/exacerbation of atherosclerosis. G-protein-coupled receptor 55 (GPR55) signaling has been reported to associate with atherosclerosis progression. We demonstrated recently that lysophosphatidylglucoside (lysoPtdGlc) is a specific ligand of GPR55, although in general physiological ligands of GPR55 are poorly understood. Phosphatidylglucoside is expressed on human monocytes and can be converted to lysoPtdGlc. In the present study, we examined possible involvement of lysoPtdGlc/GPR55 signaling in foam cell formation. In monocyte-derived M2c macrophages, lysoPtdGlc/GPR55 signaling inhibited translocation of ATP binding cassette subfamily A member 1 to plasma membrane, and cholesterol efflux. Such inhibitory effect was reversed by GPR55 antagonist ML193. LysoPtdGlc/GPR55 signaling in M2c macrophages was involved in excessive lipid accumulation, thereby promoting foam cell formation. Our findings suggest that lysoPtdGlc/GPR55 signaling is a potential therapeutic target for inhibition of atherosclerosis progression.
Collapse
Affiliation(s)
- Ryosuke Shimai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, 2-5-1 Takasu, Urayasu, Chiba, 279-0021, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Koki Kano
- Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takashi Tokano
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Tomioka, Urayasu, Chiba, 279-0021, Japan.
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, 2-5-1 Takasu, Urayasu, Chiba, 279-0021, Japan.
- Preparation Office for Establishment of the Faculty of Pharmaceutical Science, Juntendo University, 6-8-1 Hinode , Urayasu, Chiba, 279-0013, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
14
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Kano K, Ishii N, Miyagawa A, Takeda H, Hirabayashi Y, Kamiguchi H, Greimel P, Matsuo I. Protecting-group-free glycosylation of phosphatidic acid in aqueous media. Org Biomol Chem 2023; 21:2138-2142. [PMID: 36794702 DOI: 10.1039/d2ob02173k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The glycosylation of unprotected carbohydrates has emerged as an area of significant interest because it obviates the need for long reaction sequences involving protecting-group manipulations. Herein, we report the one-pot synthesis of anomeric glycosyl phosphates through the condensation of unprotected carbohydrates with phospholipid derivatives while retaining high stereo- and regioselective control. The anomeric center was activated using 2-chloro-1,3-dimethylimidazolinium chloride to facilitate condensation with glycerol-3-phosphate derivatives in an aqueous solution. A water/propionitrile mixture provided superior stereoselectivity while maintaining good yields. Under these optimized conditions, the condensation of stable isotope-labeled glucose with phosphatidic acid provided efficient access to labeled glycophospholipids as an internal standard for mass spectrometry.
Collapse
Affiliation(s)
- Koki Kano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Atsushi Miyagawa
- Department of Materials Science and Engineering, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hiroaki Takeda
- RIKEN, Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Yoshio Hirabayashi
- RIKEN, Center for Brain Science, Wako, Saitama 351-0198, Japan. .,Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | | | - Peter Greimel
- RIKEN, Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|