1
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
García-López IJ, Vélez-Ramírez AI, Gillmor CS, Fernandez-Valverde SL. lncRNAs involved in the Shade Avoidance Syndrome (SAS) in Arabidopsis thaliana. BMC Genomics 2024; 25:802. [PMID: 39183275 PMCID: PMC11346216 DOI: 10.1186/s12864-024-10718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plant long non-coding RNAs (lncRNAs) have important regulatory roles in responses to various biotic and abiotic stresses, including light quality. However, no lncRNAs have been specifically linked to the Shade Avoidance Response (SAS). RESULTS To better understand the involvement of lncRNAs in shade avoidance, we examined RNA-seq libraries for lncRNAs with the potential to function in the neighbor proximity phenomenon in Arabidopsis thaliana (A. thaliana). Using transcriptomes generated from seedlings exposed to high and low red/far-red (R/FR) light conditions, we identified 13 lncRNA genes differentially expressed in cotyledons and 138 in hypocotyls. To infer possible functions for these lncRNAs, we used a 'guilt-by-association' approach to identify genes co-expressed with lncRNAs in a weighted gene co-expression network. Of 34 co-expression modules, 10 showed biological functions related to differential growth. We identified three potential lncRNAs co-regulated with genes related to SAS. T-DNA insertions in two of these lncRNAs were correlated with morphological differences in seedling responses to increased FR light, supporting our strategy for computational identification of lncRNAs involved in SAS. CONCLUSIONS Using a computational approach, we identified multiple lncRNAs in Arabidopsis involved in SAS. T-DNA insertions caused altered phenotypes under low R/FR light, suggesting functional roles in shade avoidance. Further experiments are needed to determine the specific mechanisms of these lncRNAs in SAS.
Collapse
Affiliation(s)
| | - Aarón I Vélez-Ramírez
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, 37684, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, 37684, México
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, 36824, Guanajuato, México.
| | - Selene L Fernandez-Valverde
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Zhang A, Pi W, Wang Y, Li Y, Wang J, Liu S, Cui X, Liu H, Yao D, Zhao R. Update on functional analysis of long non-coding RNAs in common crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1389154. [PMID: 38872885 PMCID: PMC11169716 DOI: 10.3389/fpls.2024.1389154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
With the rapid advances in next-generation sequencing technology, numerous non-protein-coding transcripts have been identified, including long noncoding RNAs (lncRNAs), which are functional RNAs comprising more than 200 nucleotides. Although lncRNA-mediated regulatory processes have been extensively investigated in animals, there has been considerably less research on plant lncRNAs. Nevertheless, multiple studies on major crops showed lncRNAs are involved in crucial processes, including growth and development, reproduction, and stress responses. This review summarizes the progress in the research on lncRNA roles in several major crops, presents key strategies for exploring lncRNAs in crops, and discusses current challenges and future prospects. The insights provided in this review will enhance our comprehension of lncRNA functions in crops, with potential implications for improving crop genetics and breeding.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yashuo Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuxin Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Rengui Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Zhang Y, Yang E, Liu Q, Zhang J, Feng C. Combined full-length transcriptomic and metabolomic analysis reveals the molecular mechanisms underlying nutrients and taste components development in Primulina juliae. BMC Genom Data 2024; 25:46. [PMID: 38783179 PMCID: PMC11112898 DOI: 10.1186/s12863-024-01231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Zhiqing Rd, No. 9, Jiujiang, 332900, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Zhiqing Rd, No. 9, Jiujiang, 332900, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Zhiqing Rd, No. 9, Jiujiang, 332900, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Zhiqing Rd, No. 9, Jiujiang, 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Zhiqing Rd, No. 9, Jiujiang, 332900, China.
| |
Collapse
|
5
|
Chen W, Wang J, Wang Z, Zhu T, Zheng Y, Hawar A, Chang Y, Wang X, Li D, Wang G, Yang W, Zhao Y, Chen D, Yuan YA, Sun B. Capture of regulatory factors via CRISPR-dCas9 for mechanistic analysis of fine-tuned SERRATE expression in Arabidopsis. NATURE PLANTS 2024; 10:86-99. [PMID: 38168608 DOI: 10.1038/s41477-023-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024]
Abstract
SERRATE (SE) plays an important role in many biological processes and under biotic stress resistance. However, little about the control of SE has been clarified. Here we present a method named native chromatin-associated proteome affinity by CRISPR-dCas9 (CASPA-dCas9) to holistically capture native regulators of the SE locus. Several key regulatory factors including PHYTOCHROME RAPIDLY REGULATED 2 (PAR2), WRKY DNA-binding protein 19 (WRKY19) and the MYB-family protein MYB27 of SE are identified. MYB27 recruits the long non-coding RNA-PRC2 (SEAIR-PRC2) complex for H3K27me3 deposition on exon 1 of SE and subsequently represses SE expression, while PAR2-MYB27 interaction inhibits both the binding of MYB27 on the SE promoter and the recruitment of SEAIR-PRC2 by MYB27. The interaction between PAR2 and MYB27 fine-tunes the SE expression level at different developmental stages. In addition, PAR2 and WRKY19 synergistically promote SE expression for pathogen resistance. Collectively, our results demonstrate an efficient method to capture key regulators of target genes and uncover the precise regulatory mechanism for SE.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongsheng Chang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongbao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanjie Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Kornienko AE, Nizhynska V, Molla Morales A, Pisupati R, Nordborg M. Population-level annotation of lncRNAs in Arabidopsis reveals extensive expression variation associated with transposable element-like silencing. THE PLANT CELL 2023; 36:85-111. [PMID: 37683092 PMCID: PMC10734619 DOI: 10.1093/plcell/koad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are understudied and underannotated in plants. In mammals, lncRNA loci are nearly as ubiquitous as protein-coding genes, and their expression is highly variable between individuals of the same species. Using Arabidopsis thaliana as a model, we aimed to elucidate the true scope of lncRNA transcription across plants from different regions and study its natural variation. We used transcriptome deep sequencing data sets spanning hundreds of natural accessions and several developmental stages to create a population-wide annotation of lncRNAs, revealing thousands of previously unannotated lncRNA loci. While lncRNA transcription is ubiquitous in the genome, most loci appear to be actively silenced and their expression is extremely variable between natural accessions. This high expression variability is largely caused by the high variability of repressive chromatin levels at lncRNA loci. High variability was particularly common for intergenic lncRNAs (lincRNAs), where pieces of transposable elements (TEs) present in 50% of these lincRNA loci are associated with increased silencing and variation, and such lncRNAs tend to be targeted by the TE silencing machinery. We created a population-wide lncRNA annotation in Arabidopsis and improve our understanding of plant lncRNA genome biology, raising fundamental questions about what causes transcription and silencing across the genome.
Collapse
Affiliation(s)
- Aleksandra E Kornienko
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Almudena Molla Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-gasse 3, Vienna 1030, Austria
| |
Collapse
|
7
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
9
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
10
|
Abstract
Robust plant immune systems are fine-tuned by both protein-coding genes and non-coding RNAs. Long non-coding RNAs (lncRNAs) refer to RNAs with a length of more than 200 nt and usually do not have protein-coding function and do not belong to any other well-known non-coding RNA types. The non-protein-coding, low expression, and non-conservative characteristics of lncRNAs restrict their recognition. Although studies of lncRNAs in plants are in the early stage, emerging studies have shown that plants employ lncRNAs to regulate plant immunity. Moreover, in response to stresses, numerous lncRNAs are differentially expressed, which manifests the actions of low-expressed lncRNAs and makes plant-microbe/insect interactions a convenient system to study the functions of lncRNAs. Here, we summarize the current advances in plant lncRNAs, discuss their regulatory effects in different stages of plant immunity, and highlight their roles in diverse plant-microbe/insect interactions. These insights will not only strengthen our understanding of the roles and actions of lncRNAs in plant-microbe/insect interactions but also provide novel insight into plant immune responses and a basis for further research in this field.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Chen W, Zhu T, Shi Y, Chen Y, Li WJ, Chan RJ, Chen D, Zhang W, Yuan YA, Wang X, Sun B. An antisense intragenic lncRNA SEAIRa mediates transcriptional and epigenetic repression of SERRATE in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216062120. [PMID: 36857348 PMCID: PMC10013867 DOI: 10.1073/pnas.2216062120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
SERRATE (SE) is a core protein for microRNA (miRNA) biogenesis as well as for mRNA alternative splicing. Investigating the regulatory mechanism of SE expression is hence critical to understanding its detailed function in diverse biological processes. However, little about the control of SE expression has been clarified, especially through long noncoding RNA (lncRNA). Here, we identified an antisense intragenic lncRNA transcribed from the 3' end of SE, named SEAIRa. SEAIRa repressed SE expression, which in turn led to serrated leaves. SEAIRa recruited plant U-box proteins PUB25/26 with unreported RNA binding ability and a ubiquitin-like protein related to ubiquitin 1 (RUB1) for H2A monoubiquitination (H2Aub) at exon 11 of SE. In addition, PUB25/26 helped cleave SEAIRa and release the 5' domain fragment, which recruited the PRC2 complex for H3 lysine 27 trimethylation (H3K27me3) deposition at the first exon of SE. The distinct modifications of H2Aub and H3K27me3 at different sites of the SE locus cooperatively suppressed SE expression. Collectively, our results uncover an epigenetic mechanism mediated by the lncRNA SEAIRa that modulates SE expression, which is indispensable for plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Ying Chen
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Wei Jian Li
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Ru Jing Chan
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore117604, Singapore
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| |
Collapse
|