1
|
Severn J, Vacus T, Lauga E. Fluid mechanics of sarcomeres as porous media. SOFT MATTER 2025; 21:2849-2867. [PMID: 40125718 PMCID: PMC11931608 DOI: 10.1039/d4sm01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Muscle contraction, both in skeletal and cardiac tissue, is driven by sarcomeres, the microscopic units inside muscle cells where thick myosin and thin actin filaments slide past each other. During contraction and relaxation, the sarcomere's volume changes, causing sarcoplasm (intra-sarcomeric fluid) to flow out during contraction and back in as the sarcomere relaxes. We present a quantitative model of this sarcoplasmic flow, treating the sarcomere as an anisotropic porous medium with regions defined by the presence and absence of thick and thin filaments. Using semi-analytic methods, we solve for axial and lateral fluid flow within the filament lattice, calculating the permeabilities of this porous structure. We then apply these permeabilities within a Darcy model to determine the flow field generated during contraction. The predictions of our continuum model show excellent agreement with finite element simulations, reducing computational time by several orders of magnitude while maintaining accuracy in modelling the biophysical flow dynamics.
Collapse
Affiliation(s)
- John Severn
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Thomas Vacus
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
- Laboratoire de Physique de l'Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
2
|
Shen Y, Maxson R, McKenney RJ, Ori-McKenney KM. Microtubule acetylation is a biomarker of cytoplasmic health during cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646469. [PMID: 40236247 PMCID: PMC11996481 DOI: 10.1101/2025.03.31.646469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cellular senescence is marked by cytoskeletal dysfunction, yet the role of microtubule post-translational modifications (PTMs) remains unclear. We demonstrate that microtubule acetylation increases during drug-induced senescence in human cells and during natural aging in Drosophila . Elevating acetylation via HDAC6 inhibition or α TAT1 overexpression in BEAS-2B cells disrupts anterograde Rab6A vesicle transport, but spares retrograde transport of Rab5 endosomes. Hyperacetylation results in slowed microtubule polymerization and decreased cytoplasmic fluidity, impeding diffusion of micron-sized condensates. These effects are distinct from enhanced detyrosination, and correlate with altered viscoelasticity and resistance to osmotic stress. Modulating cytoplasmic viscosity reciprocally perturbs microtubule dynamics, revealing bidirectional mechanical regulation. Senescent cells phenocopy hyperacetylated cells, exhibiting analogous effects on transport and microtubule polymerization. Our findings establish acetylation as a biomarker for cytoplasmic health and a potential driver of age-related cytoplasmic densification and organelle transport decline, linking microtubule PTMs to biomechanical feedback loops that exacerbate senescence. This work highlights the role of acetylation in bridging cytoskeletal changes to broader aging hallmarks.
Collapse
|
3
|
Català-Castro F, Ortiz-Vásquez S, Martínez-Fernández C, Pezzano F, Garcia-Cabau C, Fernández-Campo M, Sanfeliu-Cerdán N, Jiménez-Delgado S, Salvatella X, Ruprecht V, Frigeri PA, Krieg M. Measuring age-dependent viscoelasticity of organelles, cells and organisms with time-shared optical tweezer microrheology. NATURE NANOTECHNOLOGY 2025; 20:411-420. [PMID: 39747604 PMCID: PMC11919717 DOI: 10.1038/s41565-024-01830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency. To create a practical and robust nanorheometer, we leverage both numerical and analytical models to analyse typical deviations from the ideal behaviour and offer solutions to account for these discrepancies. We demonstrate the versatility of the technique by measuring the liquid-solid phase transitions of MEC-2 stomatin and CPEB4 biomolecular condensates, and quantify the complex viscoelastic properties of intracellular compartments of zebrafish progenitor cells. In Caenorhabditis elegans, we uncover how mutations in the nuclear envelope proteins LMN-1 lamin A, EMR-1 emerin and LEM-2 LEMD2, which cause premature aging disorders in humans, soften the cytosol of intestinal cells during organismal age. We demonstrate that time-shared optical tweezer microrheology offers the rapid phenotyping of material properties inside cells and protein blends, which can be used for biomedical and drug-screening applications.
Collapse
Affiliation(s)
- Frederic Català-Castro
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Santiago Ortiz-Vásquez
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carmen Martínez-Fernández
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fabio Pezzano
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Martín Fernández-Campo
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Neus Sanfeliu-Cerdán
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Senda Jiménez-Delgado
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Verena Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Michael Krieg
- ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
4
|
Afonso O, Dumoulin L, Kruse K, Gonzalez-Gaitan M. Cytoplasmic flow is a cell size sensor that scales anaphase. Nat Cell Biol 2025; 27:273-282. [PMID: 39890956 PMCID: PMC11821524 DOI: 10.1038/s41556-024-01605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/22/2024] [Indexed: 02/03/2025]
Abstract
During early embryogenesis, fast mitotic cycles without interphase lead to a decrease in cell size, while scaling mechanisms must keep cellular structures proportional to cell size. For instance, as cells become smaller, if the position of nuclear envelope reformation (NER) did not adapt, NER would have to occur beyond the cell boundary. Here we found that NER position in anaphase scales with cell size via changes in chromosome motility, mediated by cytoplasmic flows that themselves scale with cell size. Flows are a consequence of friction between viscous cytoplasm and bulky cargo transported by dynein on astral microtubules. As an emerging property, confinement in cells of different sizes yields scaling of cytoplasmic flows. Thus, flows behave like a cell geometry sensor: astral microtubules approach the boundary causing flow velocity changes, which then affect the velocity of chromosome separation, thus scaling NER.
Collapse
Affiliation(s)
- Olga Afonso
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| | - Ludovic Dumoulin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- Department of Theoretical Physics, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Wen H, Li X, Lu Y, Liu X, Hu G. Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties. Biophys J 2025; 124:267-283. [PMID: 39644092 PMCID: PMC11788502 DOI: 10.1016/j.bpj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Stomatocyte-discocyte-echinocyte (SDE) transformations in human red blood cells (RBCs) have significant influences on blood dynamics and related disorders. The mechanical properties of the RBC membrane, such as shear modulus and bending elasticity, play crucial roles in determining RBC shapes. Recent biophysical findings reveal that building a comprehensive model capable of describing SDE shape transformations is a challenging problem. Based on dissipative particle dynamics, this study develops a two-component RBC model considering the detachment between the lipid bilayer and cytoskeleton, as well as the cytoskeletal reorganization during echinocyte formation. This model is validated by comparing RBCs' geometric shape and the apparent membrane tension with previous experimental measurements. Results indicate that a complete SDE sequence represented by six typical shapes can be obtained by modulating the model's mechanical and geometric parameters. Furthermore, a phase diagram based on reduced variables is obtained using principal-component analysis, demonstrating the phase transformations among SDE shapes. Our result suggests that the transformation from discocyte to stomatocyte is primarily influenced by dimensionless bending rigidity, whereas, during echinocyte formation, three key variables, i.e., dimensionless bending rigidity, targeting cytoskeleton shrinkage ratio, and connecting pattern, have joint impacts on the formation of spicules or bumps and the development of the cytoskeletal framework. The present two-component RBC model and the associated findings provide a perspective for a deeper understanding of the SDE transformation mechanism. This framework offers new insights into biological science and potential applications in the field of biomedical engineering.
Collapse
Affiliation(s)
- Haizhou Wen
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China; Shanghai Institute of Aircraft Mechanics and Control, Shanghai, China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Yu Lu
- School of Mechanical Engineering, Nantong University, Nantong, China
| | - Xinyue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China.
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Xie J, Najafi J, Nommick A, Lederer L, Salle J, Dmitrieff S, Lacroix B, Dumont J, Minc N. Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics. Curr Biol 2025; 35:413-421.e6. [PMID: 39755120 DOI: 10.1016/j.cub.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/06/2025]
Abstract
The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues.1,2,3,4,5 In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis.6,7,8,9,10,11,12,13,14 To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.
Collapse
Affiliation(s)
- Jing Xie
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Javad Najafi
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Aude Nommick
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Luc Lederer
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Jeremy Salle
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Serge Dmitrieff
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Benjamin Lacroix
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France.
| |
Collapse
|
7
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. Proc Natl Acad Sci U S A 2024; 121:e2402759121. [PMID: 39413133 PMCID: PMC11513977 DOI: 10.1073/pnas.2402759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/21/2024] [Indexed: 10/18/2024] Open
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living Caenorhabditis elegans embryos to measure the force generated inside the cell. We used a centrifuge polarizing microscope to apply centrifugal force and orientation-independent differential interference contrast microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~12 pN/μm depending on the distance from the center. The frictional coefficient was ~980 pN s/μm. The measured values were smaller than the previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. The frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, MA02543
- Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu431-3192, Japan
- Nagoya University, Nagoya464-8602, Japan
| | | | - Zenki Ikeda
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, MA02543
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, MA02543
- Nagoya University, Nagoya464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, MA02543
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| |
Collapse
|
8
|
Tang W, Wang J, Jiang A, Sun Y. Stiffening of the Cytoplasm in Response to Intracellularly Applied Forces. NANO LETTERS 2024. [PMID: 39377302 DOI: 10.1021/acs.nanolett.4c03979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cells constantly encounter mechanical forces that regulate various cellular functions, such as migration, division, and differentiation. Understanding how cells respond to forces at the intracellular level is essential for elucidating the mechanical adaptability of living cells. This study investigates how the cytoplasm alters its mechanical properties in response to forces applied inside a cell. The mechanical properties were measured through in situ characterization using magnetic tweezers to apply mechanical forces on magnetic beads internalized into cells. The findings reveal that the cytoplasm stiffens within seconds when force is applied to the cytoplasm. Macromolecular crowding and cytoskeletal structures, particularly F-actin, were found to significantly contribute to cytoplasm stiffening. The stiffening response was also observed across multiple length scales by using magnetic beads of varying diameters. These results highlight the rapid adaptation of the cytoplasm to mechanical forces applied to the inside of a cell.
Collapse
Affiliation(s)
- Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Jintian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Aojun Jiang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto, M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| |
Collapse
|
9
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574024. [PMID: 38260704 PMCID: PMC10802357 DOI: 10.1101/2024.01.03.574024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a novel method to apply forces to the nucleus of living, wild-type Caenorhabditis elegans embryos to measure the force generated inside the cell. We utilized a centrifuge polarizing microscope (CPM) to apply centrifugal force and orientation-independent differential interference contrast (OI-DIC) microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~14 pN/μm depending on the distance from the center. The frictional coefficient was ~1,100 pN s/μm. The measured values were smaller than previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. Frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Nagoya University, Nagoya 464-8602, Japan
| | - Michael Shribak
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Zenki Ikeda
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda 563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Nagoya University, Nagoya 464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| |
Collapse
|
11
|
Arjona MI, Najafi J, Minc N. Cytoplasm mechanics and cellular organization. Curr Opin Cell Biol 2023; 85:102278. [PMID: 37979412 DOI: 10.1016/j.ceb.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
As cells organize spatially or divide, they translocate many micron-scale organelles in their cytoplasm. These include endomembrane vesicles, nuclei, microtubule asters, mitotic spindles, or chromosomes. Organelle motion is powered by cytoskeleton forces but is opposed by viscoelastic forces imparted by the surrounding crowded cytoplasm medium. These resistive forces associated to cytoplasm physcial properties remain generally underappreciated, yet reach significant values to slow down organelle motion or even limit their displacement by springing them back towards their original position. The cytoplasm may also be itself organized in time and space, being for example stiffer or more fluid at certain locations or during particular cell cycle phases. Thus, cytoplasm mechanics may be viewed as a labile module that contributes to organize cells. We here review emerging methods, mechanisms, and concepts to study cytoplasm mechanical properties and their function in organelle positioning, cellular organization and division.
Collapse
Affiliation(s)
- María Isabel Arjona
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France.
| |
Collapse
|
12
|
Abedini-Nassab R, Sadeghidelouei N, Shields Iv CW. Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation. Anal Chim Acta 2023; 1272:341425. [PMID: 37355317 PMCID: PMC10317203 DOI: 10.1016/j.aca.2023.341425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Lab-on-a-chip tools have played a pivotal role in advancing modern biology and medicine. A key goal in this field is to precisely transport single particles and cells to specific locations on a chip for quantitative analysis. To address this large and growing need, magnetophoretic circuits have been developed in the last decade to manipulate a large number of single bioparticles in a parallel and highly controlled manner. Inspired by electrical circuits, magnetophoretic circuits are composed of passive and active circuit elements to offer commensurate levels of control and automation for transporting individual bioparticles. These specifications make them unique compared to other technologies in addressing crucial bioanalytical applications and answering fundamental questions buried in highly heterogeneous cell populations. In this comprehensive review, we describe key theoretical considerations for manufacturing and simulating magnetophoretic circuits. We provide a detailed tutorial for operating magnetophoretic devices containing different circuit elements (e.g., conductors, diodes, capacitors, and transistors). Finally, we provide a critical comparison of the utility of these devices to other microchip-based platforms for cellular manipulation, and discuss how they may address unmet needs in single-cell biology and medicine.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
| | - Negar Sadeghidelouei
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, United States
| |
Collapse
|