1
|
Conformational changes in heat- and proton-sensing ion channel in centipedes. Nat Struct Mol Biol 2025:10.1038/s41594-025-01526-4. [PMID: 40133461 DOI: 10.1038/s41594-025-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
|
2
|
Chen X, Yuan L, Wen H, Ma Q, Deng Z, Xu Y, Yao Z, Wang Y, Yang S, Su N, Yang F. Structure and function of a broad-range thermal receptor in myriapods. Nat Struct Mol Biol 2025:10.1038/s41594-025-01495-8. [PMID: 40011748 DOI: 10.1038/s41594-025-01495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Broad-range thermal receptor 1 (BRTNaC1), activated by heat at low extracellular pH, was recently identified in myriapods. Although the overexpression of BRTNaC1 leads to robust heat-activated current with a cation selectivity profile, the structure of this receptor and how it is gated by proton and heat remain to be investigated. Here we determine cryogenic electron microscopy structures of BRTNaC1 in the apo, proton-induced and heated states. Based on these structures, patch-clamp recordings and molecular dynamic simulations, we found that a 'twist the wrist' mechanism is used for proton activation of BRTNaC1, while heat induces broad conformational changes in BRTNaC1, including rotation and shift in the transmembrane helices to open this channel. Moreover, as testosterone inhibited BRTNaC1 activation, we identified four clustered residues important for such inhibition. Therefore, our study has established the structural basis for ligand and temperature gating in the BRTNaC1 ion channel.
Collapse
Affiliation(s)
- Xiaoying Chen
- Kidney Disease Center of the First Affiliated Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Licheng Yuan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Han Wen
- DP Technology, Beijing, China
- Institute for Advanced Algorithms Research, Shanghai, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- AI for Science Institute, Beijing, China
- National Key Laboratory of Lead Druggability Research, Beijing, China
| | - Qingxia Ma
- Cancer Institute, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Zhenfeng Deng
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yongan Xu
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Yao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yunfei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Nannan Su
- Center for Membrane receptors and Brain Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Fan Yang
- Kidney Disease Center of the First Affiliated Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| |
Collapse
|
3
|
Summers F, Tuske AM, Puglisi C, Wong A, Rojo A, Swierk L. Ambient light spectrum affects larval Mexican jumping bean moth (Cydia saltitans) behavior despite light obstruction from host seed. Behav Processes 2024; 221:105093. [PMID: 39191315 DOI: 10.1016/j.beproc.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Spectral differences in ambient light can affect animal behavior and convey crucial information about an individual's environment. The ability to perceive and respond to differences in ambient light varies widely by taxa and is shaped by a species' ecology. Mexican jumping bean moths, Cydia saltitans, spend their entire larval period encased in fallen host seeds and contend with potentially lethal environmental temperatures when host seeds are in direct sunlight. We investigate if and how C. saltitans larvae in host seeds respond to lighting conditions associated with these thermal risks. In a temperature-controlled experiment, we identified that larvae demonstrated distinct behavioral ("jumping") responses corresponding to four lighting treatments (white, red, green, and purple), despite extremely minimal light penetration through host seed walls. Red light induced the greatest larval activity (measured by probability of movement and by displacement from origin), suggesting that larvae have mechanisms to perceive low levels of red light and/or to detect subtle increases in heat produced by red/near infrared-biased light spectra, possibly providing them with an early-warning mechanism against thermal stress. Our findings highlight the interplay of environmental lighting, behavior, and potential thermosensory adaptations in a species with a visually constrained environment.
Collapse
Affiliation(s)
- Faith Summers
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Amber M Tuske
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Cassandra Puglisi
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Annie Wong
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Andrés Rojo
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA; Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú.
| |
Collapse
|
4
|
de Souza PE, Gonçalves BDSB, Souza-Silva M, Ferreira RL. Divergent patterns of locomotor activity in cave isopods (Oniscidea: Styloniscidae) in Neotropics. Chronobiol Int 2024; 41:1199-1216. [PMID: 39158061 DOI: 10.1080/07420528.2024.2391865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
In cave environments, stable conditions devoid of light-dark cycles and temperature fluctuations sustain circadian clock mechanisms across various species. However, species adapted to these conditions may exhibit disruption of circadian rhythm in locomotor activity. This study examines potential rhythm loss due to convergent evolution in five semi-aquatic troglobitic isopod species (Crustacea: Styloniscidae), focusing on its impact on locomotor activity. The hypothesis posits that these species display aperiodic locomotor activity patterns. Isopods were subjected to three treatments: constant red light (DD), constant light (LL), and light-dark cycles (LD 12:12), totaling 1656 h. Circadian rhythm analysis employed the Sokolove and Bushell periodogram chi-square test, Hurst coefficient calculation, intermediate stability (IS), and activity differences for each species. Predominantly, all species exhibited an infradian rhythm under DD and LL. There was synchronization of the locomotor rhythm in LD, likely as a result of masking. Three species displayed diurnal activity, while two exhibited nocturnal activity. The Hurst coefficient indicated rhythmic persistence, with LD showing higher variability. LD conditions demonstrated higher IS values, suggesting synchronized rhythms across species. Significant individual variations were observed within species across the three conditions. Contrary to the hypothesis, all species exhibited synchronization under light-dark conditions. Analyzing circadian activity provides insights into organism adaptation to non-cyclical environments, emphasizing the importance of exploring underlying mechanisms.
Collapse
Affiliation(s)
- Priscila Emanuela de Souza
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | | | - Marconi Souza-Silva
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | - Rodrigo Lopes Ferreira
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
5
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. eLife 2023; 12:RP90755. [PMID: 38054969 PMCID: PMC10699805 DOI: 10.7554/elife.90755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
6
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547693. [PMID: 37461628 PMCID: PMC10350031 DOI: 10.1101/2023.07.05.547693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recently it has been shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of the channel is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C-terminus and the N-terminus which blocks the RIPK1 binding site. Here, we use a combination of two transition metal ion FRET methods to investigate the conformational dynamics of the termini while the channel is closed and desensitized. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together when desensitized. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Abigail Camenisch
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|