1
|
Limpitikul WB, Dick IE. Inactivation of CaV1 and CaV2 channels. J Gen Physiol 2025; 157:e202313531. [PMID: 39883005 PMCID: PMC11781272 DOI: 10.1085/jgp.202313531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression. For CaV1 and CaV2 channel families, inactivation proceeds via two distinct processes. Voltage-dependent inactivation (VDI) reduces Ca2+ entry through the channel in response to sustained or repetitive depolarization, while Ca2+-dependent inactivation (CDI) occurs in response to elevations in intracellular Ca2+ levels. These processes are critical for physiological function and undergo exquisite fine-tuning through multiple mechanisms. Here, we review known determinants and modulatory features of these two critical forms of channel regulation and their role in normal physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Li J, Veeraraghavan P, Young SM. Ca V 2.1 α 1 subunit motifs that control presynaptic Ca V 2.1 subtype abundance are distinct from Ca V 2.1 preference. J Physiol 2024; 602:485-506. [PMID: 38155373 PMCID: PMC10872416 DOI: 10.1113/jp284957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1 subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1 subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1 subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1 subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1 subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1 subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1 subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1 subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.
Collapse
Affiliation(s)
- Jianing Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
4
|
Li J, Veeraraghavan P, Young SM. CaV2.1 α1 subunit motifs that control presynaptic CaV2.1 subtype abundance are distinct from CaV2.1 preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538778. [PMID: 37162941 PMCID: PMC10168310 DOI: 10.1101/2023.04.28.538778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Presynaptic voltage-gated Ca2+ channels (CaV) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system, most presynaptic terminals are CaV2.1 dominant with a developmental reduction in CaV2.2 and CaV2.3 levels, and CaV2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV2 subtype levels are largely unsolved. Since the CaV2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV2.1 α1subunits containing swapped motifs with the CaV2.2 and CaV2.3 α1 subunit on a CaV2.1/CaV2.2 null background at the calyx of Held presynaptic terminal. We found that expression of CaV2.1 α1 subunit chimeras containing the CaV2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV2.1 blocker Agatoxin-IVA, was the same between the chimeras and the CaV2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV2.1 loop II-III and CT do not individually regulate CaV2.1 preference, but these motifs control CaV2.1 levels and the CaV2.3 CT contains motifs that negatively regulate presynaptic CaV2.3 levels. We propose that the motifs controlling presynaptic CaV2.1 preference are distinct from those regulating CaV2.1 levels and may act synergistically to impact pathways regulating CaV2.1 preference and abundance.
Collapse
|
5
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
6
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
7
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
8
|
Synaptotagmin-7 Enhances Facilitation of Ca v2.1 Calcium Channels. eNeuro 2022; 9:ENEURO.0081-22.2022. [PMID: 35477860 PMCID: PMC9113918 DOI: 10.1523/eneuro.0081-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated calcium channel Cav2.1 undergoes Ca2+-dependent facilitation and inactivation, which are important in short-term synaptic plasticity. In presynaptic terminals, Cav2.1 forms large protein complexes that include synaptotagmins. Synaptotagmin-7 (Syt-7) is essential to mediate short-term synaptic plasticity in many synapses. Here, based on evidence that Cav2.1 and Syt-7 are both required for short-term synaptic facilitation, we investigated the direct interaction of Syt-7 with Cav2.1 and probed its regulation of Cav2.1 function. We found that Syt-7 binds specifically to the α1A subunit of Cav2.1 through interaction with the synaptic-protein interaction (synprint) site. Surprisingly, this interaction enhances facilitation in paired-pulse protocols and accelerates the onset of facilitation. Syt-7α induces a depolarizing shift in the voltage dependence of activation of Cav2.1 and slows Ca2+-dependent inactivation, whereas Syt-7β and Syt-7γ have smaller effects. Our results identify an unexpected, isoform-specific interaction between Cav2.1 and Syt-7 through the synprint site, which enhances Cav2.1 facilitation and modulates its inactivation.
Collapse
|
9
|
Yaduvanshi S, Ero R, Kumar V. The mechanism of complex formation between calmodulin and voltage gated calcium channels revealed by molecular dynamics. PLoS One 2021; 16:e0258112. [PMID: 34610038 PMCID: PMC8491939 DOI: 10.1371/journal.pone.0258112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
Calmodulin, a ubiquitous eukaryotic calcium sensor responsible for the regulation of many fundamental cellular processes, is a highly flexible protein and exhibits an unusually wide range of conformations. Furthermore, CaM is known to interact with more than 300 cellular targets. Molecular dynamics (MD) simulation trajectories suggest that EF-hand loops show different magnitudes of flexibility. Therefore, the four EF-hand motifs have different affinities for Ca2+ ions, which enables CaM to function on wide range of Ca2+ ion concentrations. EF-hand loops are 2-3 times more flexible in apo CaM whereas least flexible in Ca2+/CaM-IQ motif complexes. We report a unique intermediate conformation of Ca2+/CaM while transitioning from extended to compact form. We also report the complex formation process between Ca2+/CaM and IQ CaM-binding motifs. Our results showed how IQ motif recognise its binding site on the CaM and how CaM transforms from extended to compact form upon binding to IQ motif.
Collapse
Affiliation(s)
- Shivani Yaduvanshi
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
| | - Rya Ero
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Veerendra Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Noida, Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
10
|
Sang L, Vieira DCO, Yue DT, Ben-Johny M, Dick IE. The molecular basis of the inhibition of Ca V1 calcium-dependent inactivation by the distal carboxy tail. J Biol Chem 2021; 296:100502. [PMID: 33667546 PMCID: PMC8054141 DOI: 10.1016/j.jbc.2021.100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ca2+/calmodulin-dependent inactivation (CDI) of CaV channels is a critical regulatory process that tunes the kinetics of Ca2+ entry for different cell types and physiologic responses. CDI is mediated by calmodulin (CaM), which is bound to the IQ domain of the CaV carboxy tail. This modulatory process is tailored by alternative splicing such that select splice variants of CaV1.3 and CaV1.4 contain a long distal carboxy tail (DCT). The DCT harbors an inhibitor of CDI (ICDI) module that competitively displaces CaM from the IQ domain, thereby diminishing CDI. While this overall mechanism is now well described, the detailed interactions required for ICDI binding to the IQ domain are yet to be elucidated. Here, we perform alanine-scanning mutagenesis of the IQ and ICDI domains and evaluate the contribution of neighboring regions to CDI inhibition. Through FRET binding analysis, we identify functionally relevant residues within the CaV1.3 IQ domain and the CaV1.4 ICDI and nearby A region, which are required for high-affinity IQ/ICDI binding. Importantly, patch-clamp recordings demonstrate that disruption of this interaction commensurately diminishes ICDI function resulting in the re-emergence of CDI in mutant channels. Furthermore, CaV1.2 channels harbor a homologous DCT; however, the ICDI region of this channel does not appear to appreciably modulate CaV1.2 CDI. Yet coexpression of CaV1.2 ICDI with select CaV1.3 splice variants significantly disrupts CDI, implicating a cross-channel modulatory scheme in cells expressing both channel subtypes. In all, these findings provide new insights into a molecular rheostat that fine-tunes Ca2+-entry and supports normal neuronal and cardiac function.
Collapse
Affiliation(s)
- Lingjie Sang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Ivy E Dick
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Yeow SQZ, Loh KWZ, Soong TW. Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:67-86. [DOI: 10.1007/978-981-16-4254-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
13
|
Chakouri N, Diaz J, Yang PS, Ben-Johny M. Ca V channels reject signaling from a second CaM in eliciting Ca 2+-dependent feedback regulation. J Biol Chem 2020; 295:14948-14962. [PMID: 32820053 DOI: 10.1074/jbc.ra120.013777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) regulation of voltage-gated calcium (CaV1-2) channels is a powerful Ca2+-feedback mechanism to adjust channel activity in response to Ca2+ influx. Despite progress in resolving mechanisms of CaM-CaV feedback, the stoichiometry of CaM interaction with CaV channels remains ambiguous. Functional studies that tethered CaM to CaV1.2 suggested that a single CaM sufficed for Ca2+ feedback, yet biochemical, FRET, and structural studies showed that multiple CaM molecules interact with distinct interfaces within channel cytosolic segments, suggesting that functional Ca2+ regulation may be more nuanced. Resolving this ambiguity is critical as CaM is enriched in subcellular domains where CaV channels reside, such as the cardiac dyad. We here localized multiple CaMs to the CaV nanodomain by tethering either WT or mutant CaM that lack Ca2+-binding capacity to the pore-forming α-subunit of CaV1.2, CaV1.3, and CaV2.1 and/or the auxiliary β2A subunit. We observed that a single CaM tethered to either the α or β2A subunit tunes Ca2+ regulation of CaV channels. However, when multiple CaMs are localized concurrently, CaV channels preferentially respond to signaling from the α-subunit-tethered CaM. Mechanistically, the introduction of a second IQ domain to the CaV1.3 carboxyl tail switched the apparent functional stoichiometry, permitting two CaMs to mediate functional regulation. In all, Ca2+ feedback of CaV channels depends exquisitely on a single CaM preassociated with the α-subunit carboxyl tail. Additional CaMs that colocalize with the channel complex are unable to trigger Ca2+-dependent feedback of channel gating but may support alternate regulatory functions.
Collapse
Affiliation(s)
- Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philemon S Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
14
|
Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch 2020; 472:791-809. [DOI: 10.1007/s00424-020-02396-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
|
15
|
Weyrer C, Turecek J, Niday Z, Liu PW, Nanou E, Catterall WA, Bean BP, Regehr WG. The Role of Ca V2.1 Channel Facilitation in Synaptic Facilitation. Cell Rep 2020; 26:2289-2297.e3. [PMID: 30811980 PMCID: PMC6597251 DOI: 10.1016/j.celrep.2019.01.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
Activation of CaV2.1 voltage-gated calcium channels is facilitated by preceding calcium entry. Such self-modulatory facilitation is thought to contribute to synaptic facilitation. Using knockin mice with mutated CaV2.1 channels that do not facilitate (Ca IM-AA mice), we surprisingly found that, under conditions of physiological calcium and near-physiological temperatures, synaptic facilitation at hippocampal CA3 to CA1 synapses was not attenuated in Ca IM-AA mice and facilitation was paradoxically more prominent at two cerebellar synapses. Enhanced facilitation at these synapses is consistent with a decrease in initial calcium entry, suggested by an action-potential-evoked CaV2.1 current reduction in Purkinje cells from Ca IM-AA mice. In wild-type mice, CaV2.1 facilitation during high-frequency action potential trains was very small. Thus, for the synapses studied, facilitation of calcium entry through CaV2.1 channels makes surprisingly little contribution to synaptic facilitation under physiological conditions. Instead, CaV2.1 facilitation offsets CaV2.1 inactivation to produce remarkably stable calcium influx during high-frequency activation. Weyrer et al. use Ca IM-AA mice in which CaV2.1 calcium channel facilitation is eliminated to study synaptic facilitation at hippocampal and cerebellar synapses. Under conditions of physiological temperature, external calcium, and presynaptic waveforms, facilitation of CaV2.1 channels is small and does not contribute to synaptic facilitation at these synapses.
Collapse
Affiliation(s)
- Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Niday
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Human Milk Oligosaccharide 2′-Fucosyllactose Reduces Neurodegeneration in Stroke Brain. Transl Stroke Res 2020; 11:1001-1011. [DOI: 10.1007/s12975-019-00774-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
|
17
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
18
|
Nanou E, Catterall WA. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2019; 98:466-481. [PMID: 29723500 DOI: 10.1016/j.neuron.2018.03.017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Voltage-gated calcium channels couple depolarization of the cell-surface membrane to entry of calcium, which triggers secretion, contraction, neurotransmission, gene expression, and other physiological responses. They are encoded by ten genes, which generate three voltage-gated calcium channel subfamilies: CaV1; CaV2; and CaV3. At synapses, CaV2 channels form large signaling complexes in the presynaptic nerve terminal, which are responsible for the calcium entry that triggers neurotransmitter release and short-term presynaptic plasticity. CaV1 channels form signaling complexes in postsynaptic dendrites and dendritic spines, where their calcium entry induces long-term potentiation. These calcium channels are the targets of mutations and polymorphisms that alter their function and/or regulation and cause neuropsychiatric diseases, including migraine headache, cerebellar ataxia, autism, schizophrenia, bipolar disorder, and depression. This article reviews the molecular properties of calcium channels, considers their multiple roles in synaptic plasticity, and discusses their potential involvement in this wide range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
19
|
Presynaptic Calcium Channels. Int J Mol Sci 2019; 20:ijms20092217. [PMID: 31064106 PMCID: PMC6539076 DOI: 10.3390/ijms20092217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
20
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Bazmi M, Escobar AL. How Ca 2+ influx is attenuated in the heart during a "fight or flight" response. J Gen Physiol 2019; 151:722-726. [PMID: 31004065 PMCID: PMC6572000 DOI: 10.1085/jgp.201912338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bazmi and Escobar highlight a recent investigation of the mechanisms that regulate Ca2+ influx during sympathetic stimulation.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA
| |
Collapse
|
22
|
A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Neuron 2019; 101:1134-1149.e3. [DOI: 10.1016/j.neuron.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 12/31/2018] [Indexed: 11/22/2022]
|
23
|
Williams B, Haeseleer F, Lee A. Splicing of an automodulatory domain in Ca v1.4 Ca 2+ channels confers distinct regulation by calmodulin. J Gen Physiol 2018; 150:1676-1687. [PMID: 30355583 PMCID: PMC6279360 DOI: 10.1085/jgp.201812140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Cav1.4 Ca2+ channels provide maintained Ca2+ entry to support sustained neurotransmitter release, but a retinal splice variant exhibits calmodulin-dependent inactivation. Williams et al. show that the N lobe of calmodulin is involved in this process as well as Ca2+-dependent enhancement of channel activation. Ca2+ influx through Cav1.4 L-type Ca2+ channels supports the sustained release of glutamate from photoreceptor synaptic terminals in darkness, a process that is critical for vision. Consistent with this role, Cav1.4 exhibits weak Ca2+-dependent inactivation (CDI)—a negative feedback regulation mediated by Ca2+-bound calmodulin (CaM). CaM binds to a conserved IQ domain in the proximal C-terminal domain of Cav channels, but in Cav1.4, a C-terminal modulatory domain (CTM) disrupts interactions with CaM. Exon 47 encodes a portion of the CTM and is deleted in a Cav1.4 splice variant (Cav1.4Δex47) that is highly expressed in the human retina. Cav1.4Δex47 exhibits CDI and enhanced voltage-dependent activation, similar to that caused by a mutation that is associated with congenital stationary night blindness type 2, in which the CTM is deleted (K1591X). The presence of CDI and very negative activation thresholds in a naturally occurring variant of Cav1.4 are perplexing considering that these properties are expected to be maladaptive for visual signaling and result in night blindness in the case of K1591X. Here we show that Cav1.4Δex47 and K1591X exhibit fundamental differences in their regulation by CaM. In Cav1.4Δex47, CDI requires both the N-terminal (N lobe) and C-terminal (C lobe) lobes of CaM to bind Ca2+, whereas CDI in K1591X is driven mainly by Ca2+ binding to the C lobe. Moreover, the CaM N lobe causes a Ca2+-dependent enhancement of activation of Cav1.4Δex47 but not K1591X. We conclude that the residual CTM in Cav1.4Δex47 enables a form of CaM N lobe regulation of activation and CDI that is absent in K1591X. Interaction with the N lobe of CaM, which is more sensitive to global elevations in cytosolic Ca2+ than the C lobe, may allow Cav1.4Δex47 to be modulated by a wider range of synaptic Ca2+ concentrations than K1591X; this may distinguish the normal physiological function of Cav1.4Δex47 from the pathological consequences of K1591X.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - Françoise Haeseleer
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA .,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA.,Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA.,Department of Neurology, University of Iowa, Iowa City, IA
| |
Collapse
|
24
|
Giudicessi JR, Ackerman MJ. Calcium Revisited: New Insights Into the Molecular Basis of Long-QT Syndrome. Circ Arrhythm Electrophysiol 2018; 9:CIRCEP.116.002480. [PMID: 27390209 DOI: 10.1161/circep.116.002480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
Affiliation(s)
- John R Giudicessi
- From the Internal Medicine Residency and Clinician-Investigator Programs, Department of Medicine (J.R.G.) and Departments of Cardiovascular Diseases, Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Internal Medicine Residency and Clinician-Investigator Programs, Department of Medicine (J.R.G.) and Departments of Cardiovascular Diseases, Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
25
|
Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels. J Neurosci 2018; 38:4430-4440. [PMID: 29654190 DOI: 10.1523/jneurosci.0022-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/15/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022] Open
Abstract
Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca2+) channel type 2.1 (CaV2.1) by neuronal Ca2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in CaV2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of CaV2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of CaV2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice.SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca2+ (CaV) channels. Regulation of CaV2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of CaV2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with CaV2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits.
Collapse
|
26
|
Abstract
Calmodulin (CaM) regulation of voltage-gated calcium (CaV) channels is a powerful Ca2+ feedback mechanism that adjusts Ca2+ influx, affording rich mechanistic insights into Ca2+ decoding. CaM possesses a dual-lobed architecture, a salient feature of the myriad Ca2+-sensing proteins, where two homologous lobes that recognize similar targets hint at redundant signaling mechanisms. Here, by tethering CaM lobes, we demonstrate that bilobal architecture is obligatory for signaling to CaV channels. With one lobe bound, CaV carboxy tail rearranges itself, resulting in a preinhibited configuration precluded from Ca2+ feedback. Reconstitution of two lobes, even as separate molecules, relieves preinhibition and restores Ca2+ feedback. CaV channels thus detect the coincident binding of two Ca2+-free lobes to promote channel opening, a molecular implementation of a logical NOR operation that processes spatiotemporal Ca2+ signals bifurcated by CaM lobes. Overall, a unified scheme of CaV channel regulation by CaM now emerges, and our findings highlight the versatility of CaM to perform exquisite Ca2+ computations.
Collapse
|
27
|
Dunn TW, Fan X, Ase AR, Séguéla P, Sossin WS. The Ca V2α1 EF-hand F helix tyrosine, a highly conserved locus for GPCR inhibition of Ca V2 channels. Sci Rep 2018; 8:3263. [PMID: 29459734 PMCID: PMC5818475 DOI: 10.1038/s41598-018-21586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
The sensory neuron of Aplysia californica participates in several forms of presynaptic plasticity including homosynaptic depression, heterosynaptic depression, facilitation and the reversal of depression. The calcium channel triggering neurotransmitter release at most synapses is CaV2, consisting of the pore forming α1 subunit (CaV2α1), and auxiliary CaVβ, and CaVα2δ subunits. To determine the role of the CaV2 channel in presynaptic plasticity in Aplysia, we cloned Aplysia CaV2α1, CaVβ, and CaVα2δ and over-expressed the proteins in Aplysia sensory neurons (SN). We show expression of exogenous CaV2α1 in the neurites of cultured Aplysia SN. One proposed mechanism for heterosynaptic depression in Aplysia is through inhibition of CaV2. Here, we demonstrate that heterosynaptic depression of the CaV2 calcium current is inhibited when a channel with a Y-F mutation at the conserved Src phosphorylation site is expressed, showing the strong conservation of this mechanism over evolution. We also show that the Y-F mutation reduces heterosynaptic inhibition of neurotransmitter release, highlighting the physiological importance of this mechanism for the regulation of synaptic efficacy. These results also demonstrate our ability to replace endogenous CaV2 channels with recombinant channels allowing future examination of the structure function relationship of CaV2 in the regulation of transmitter release in this system.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ariel R Ase
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
28
|
Presynaptic calcium channels. Neurosci Res 2018; 127:33-44. [DOI: 10.1016/j.neures.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
29
|
Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD. Calmodulin regulates Ca v3 T-type channels at their gating brake. J Biol Chem 2017; 292:20010-20031. [PMID: 28972185 PMCID: PMC5723990 DOI: 10.1074/jbc.m117.807925] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I-II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I-II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | | | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | - Michael Piazza
- Departments of Chemistry, Waterloo, Ontario N2L 3G1, Canada
| | - Wendy Guan
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | | | | | - J David Spafford
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
30
|
Thomas JR, Hagen J, Soh D, Lee A. Molecular moieties masking Ca 2+-dependent facilitation of voltage-gated Ca v2.2 Ca 2+ channels. J Gen Physiol 2017; 150:83-94. [PMID: 29208674 PMCID: PMC5749111 DOI: 10.1085/jgp.201711841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Ca2+-dependent facilitation is a positive feedback mechanism that regulates Cav2.1 P/Q-type channels but not closely related Cav2.2 N-type channels. Thomas et al. identify the molecular determinants that distinguish the ability of Cav2.1 and Cav2.2 to undergo Ca2+-dependent facilitation. Voltage-gated Cav2.1 (P/Q-type) Ca2+ channels undergo Ca2+-dependent inactivation (CDI) and facilitation (CDF), both of which contribute to short-term synaptic plasticity. Both CDI and CDF are mediated by calmodulin (CaM) binding to sites in the C-terminal domain of the Cav2.1 α1 subunit, most notably to a consensus CaM-binding IQ-like (IQ) domain. Closely related Cav2.2 (N-type) channels display CDI but not CDF, despite overall conservation of the IQ and additional sites (pre-IQ, EF-hand–like [EF] domain, and CaM-binding domain) that regulate CDF of Cav2.1. Here we investigate the molecular determinants that prevent Cav2.2 channels from undergoing CDF. Although alternative splicing of C-terminal exons regulates CDF of Cav2.1, the splicing of analogous exons in Cav2.2 does not reveal CDF. Transfer of sequences encoding the Cav2.1 EF, pre-IQ, and IQ together (EF-pre-IQ-IQ), but not individually, are sufficient to support CDF in chimeric Cav2.2 channels; Cav2.1 chimeras containing the corresponding domains of Cav2.2, either alone or together, fail to undergo CDF. In contrast to the weak binding of CaM to just the pre-IQ and IQ of Cav2.2, CaM binds to the EF-pre-IQ-IQ of Cav2.2 as well as to the corresponding domains of Cav2.1. Therefore, the lack of CDF in Cav2.2 likely arises from an inability of its EF-pre-IQ-IQ to transduce the effects of CaM rather than weak binding to CaM per se. Our results reveal a functional divergence in the CDF regulatory domains of Cav2 channels, which may help to diversify the modes by which Cav2.1 and Cav2.2 can modify synaptic transmission.
Collapse
Affiliation(s)
- Jessica R Thomas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA
| | - Jussara Hagen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Daniel Soh
- Medical Sciences Program, Boston University, Boston, MA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA .,Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA.,Department of Neurology, University of Iowa, Iowa City, IA
| |
Collapse
|
31
|
Jackman SL, Regehr WG. The Mechanisms and Functions of Synaptic Facilitation. Neuron 2017; 94:447-464. [PMID: 28472650 DOI: 10.1016/j.neuron.2017.02.047] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
The ability of the brain to store and process information relies on changing the strength of connections between neurons. Synaptic facilitation is a form of short-term plasticity that enhances synaptic transmission for less than a second. Facilitation is a ubiquitous phenomenon thought to play critical roles in information transfer and neural processing. Yet our understanding of the function of facilitation remains largely theoretical. Here we review proposed roles for facilitation and discuss how recent progress in uncovering the underlying molecular mechanisms could enable experiments that elucidate how facilitation, and short-term plasticity in general, contributes to circuit function and animal behavior.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA.
| |
Collapse
|
32
|
Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na V1.2. Biophys Chem 2017; 224:1-19. [PMID: 28343066 PMCID: PMC5503752 DOI: 10.1016/j.bpc.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Ryan Mahling
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Zesen Lin
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Mark Stephen Miller
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Dagan C Marx
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Jesse B Yoder
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Elaine H Kim
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Kristin M Tefft
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Brett C Waite
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Michael D Feldkamp
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States.
| |
Collapse
|
33
|
Piazza M, Taiakina V, Dieckmann T, Guillemette JG. Structural Consequences of Calmodulin EF Hand Mutations. Biochemistry 2017; 56:944-956. [PMID: 28121131 DOI: 10.1021/acs.biochem.6b01296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Valentina Taiakina
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - J Guy Guillemette
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
MOCHIDA S. Millisecond Ca 2+ dynamics activate multiple protein cascades for synaptic vesicle control. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:802-820. [PMID: 29225307 PMCID: PMC5790758 DOI: 10.2183/pjab.93.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Sumiko MOCHIDA
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Benmocha Guggenheimer A, Almagor L, Tsemakhovich V, Tripathy DR, Hirsch JA, Dascal N. Interactions between N and C termini of α1C subunit regulate inactivation of CaV1.2 L-type Ca(2+) channel. Channels (Austin) 2016; 10:55-68. [PMID: 26577286 DOI: 10.1080/19336950.2015.1108499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The modulation and regulation of voltage-gated Ca(2+) channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca(2+) channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca(2+), presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca(2+)-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca(2+) entry into the cell.
Collapse
Affiliation(s)
- Adva Benmocha Guggenheimer
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| | - Lior Almagor
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel.,c Present address: Department of Structural Biology , Stanford University, School of Medicine ; Stanford , CA USA
| | - Vladimir Tsemakhovich
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| | - Debi Ranjan Tripathy
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel
| | - Joel A Hirsch
- b Department of Biochemistry & Molecular Biology ; Institute of Structural Biology, George S Weiss Faculty of Life Sciences; Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv , Israel
| | - Nathan Dascal
- a Department of Physiology and Pharmacology ; Sackler School of Medicine; Sagol School of Neuroscience ; Tel Aviv , Israel
| |
Collapse
|
36
|
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Curr Mol Pharmacol 2016; 8:188-205. [PMID: 25966688 DOI: 10.2174/1874467208666150507110359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Lee SR, Adams PJ, Yue DT. Large Ca²⁺-dependent facilitation of Ca(V)2.1 channels revealed by Ca²⁺ photo-uncaging. J Physiol 2016; 593:2753-78. [PMID: 25809476 DOI: 10.1113/jp270091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS CaV 2.1 channels constitute a dominant Ca(2+) entry pathway into brain neurons, triggering downstream Ca(2+) -dependent processes such as neurotransmitter release. CaV 2.1 is itself modulated by Ca(2+) , resulting in activity-dependent enhancement of channel opening termed Ca(2+) -dependent facilitation (CDF). Real-time Ca(2+) imaging and Ca(2+) uncaging here reveal that CDF turns out to be strikingly faster, more Ca(2+) sensitive, and larger than anticipated on previous grounds. Robust resolution of the quantitative profile of CDF enables deduction of a realistic biophysical model for this process. These results suggest that CaV 2.1 CDF would figure most prominently in short-term synaptic plasticity and cerebellar Purkinje cell rhythmicity. ABSTRACT CaV 2.1 (P-type) voltage-gated Ca(2+) channels constitute a major source of neuronal Ca(2+) current, strongly influencing rhythmicity and triggering neurotransmitter release throughout the central nervous system. Fitting with such stature among Ca(2+) entry pathways, CaV 2.1 is itself feedback regulated by intracellular Ca(2+) , acting through calmodulin to facilitate channel opening. The precise neurophysiological role of this calcium-dependent facilitation (CDF) remains uncertain, however, in large measure because the very magnitude, Ca(2+) dependence and kinetics of CDF have resisted quantification by conventional means. Here, we utilize the photo-uncaging of Ca(2+) with CaV 2.1 channels fluxing Li(+) currents, so that voltage-dependent activation of channel gating is no longer conflated with Ca(2+) entry, and CDF is then driven solely by light-induced increases in Ca(2+) . By using this strategy, we now find that CDF can be unexpectedly large, enhancing currents by as much as twofold at physiological voltages. CDF is steeply Ca(2+) dependent, with a Hill coefficient of approximately two, a half-maximal effect reached by nearly 500 nm Ca(2+) , and Ca(2+) on/off kinetics in the order of milliseconds to tens of milliseconds. These properties were established for both native P-type currents in cerebellar Purkinje neurons, as well as their recombinant channel counterparts under heterologous expression. Such features suggest that CDF of CaV 2.1 channels may substantially enhance the regularity of rhythmic firing in cerebellar Purkinje neurons, where regularity is believed crucial for motor coordination. In addition, this degree of extensive CDF would be poised to exert large order-of-magnitude effects on short-term synaptic plasticity via rapid modulation of presynaptic Ca(2+) entry.
Collapse
Affiliation(s)
- Shin-Rong Lee
- Calcium Signals Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul J Adams
- Department of Biology, Kwantlen Polytechnic University, Surrey, BC, Canada, V3W 2M8
| | - David T Yue
- Calcium Signals Laboratory, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Departments of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
38
|
Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens. Behav Brain Res 2016; 301:213-25. [DOI: 10.1016/j.bbr.2015.12.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022]
|
39
|
Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons. Proc Natl Acad Sci U S A 2016; 113:1062-7. [PMID: 26755594 DOI: 10.1073/pnas.1524636113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
Collapse
|
40
|
Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels. Proc Natl Acad Sci U S A 2016; 113:1068-73. [PMID: 26755585 DOI: 10.1073/pnas.1524650113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.
Collapse
|
41
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
42
|
Díaz-Rojas F, Sakaba T, Kawaguchi SY. Ca(2+) current facilitation determines short-term facilitation at inhibitory synapses between cerebellar Purkinje cells. J Physiol 2015; 593:4889-904. [PMID: 26337248 DOI: 10.1113/jp270704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/23/2015] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Short-term facilitation takes place at GABAergic synapses between cerebellar Purkinje cells (PCs). By directly patch clamp recording from a PC axon terminal, we studied the mechanism of short-term facilitation. We show that the Ca(2+) currents elicited by high-frequency action potentials were augmented in a [Ca(2+) ]i -dependent manner. The facilitation of synaptic transmission showed 4-5th power dependence on the Ca(2+) current facilitation, and was abolished when the Ca(2+) current amplitude was adjusted to be identical. Short-term facilitation of Ca(2+) currents predominantly mediates short-term facilitation at synapses between PCs. ABSTRACT Short-term synaptic facilitation is critical for information processing of neuronal circuits. Several Ca(2+) -dependent positive regulations of transmitter release have been suggested as candidate mechanisms underlying facilitation. However, the small sizes of presynaptic terminals have hindered the biophysical study of short-term facilitation. In the present study, by directly recording from the axon terminal of a rat cerebellar Purkinje cell (PC) in culture, we demonstrate a crucial role of [Ca(2+) ]i -dependent facilitation of Ca(2+) currents in short-term facilitation at inhibitory PC-PC synapses. Voltage clamp recording was performed from a PC axon terminal visualized by enhanced green fluorescent protein, and the Ca(2+) currents elicited by the voltage command consisting of action potential waveforms were recorded. The amplitude of presynaptic Ca(2+) current was augmented upon high-frequency paired-pulse stimulation in a [Ca(2+) ]i -dependent manner, leading to paired-pulse facilitation of Ca(2+) currents. Paired recordings from a presynaptic PC axon terminal and a postsynaptic PC soma demonstrated that the paired-pulse facilitation of inhibitory synaptic transmission between PCs showed 4-5th power dependence on that of Ca(2+) currents, and was completely abolished when the Ca(2+) current amplitude was adjusted to be identical. Thus, short-term facilitation of Ca(2+) currents predominantly mediates short-term synaptic facilitation at synapses between PCs.
Collapse
Affiliation(s)
- Françoise Díaz-Rojas
- Graduate School of Brain Science, Doshisha University, Tatara Miyakodani, Kyotanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Tatara Miyakodani, Kyotanabe, Kyoto, Japan
| | - Shin-Ya Kawaguchi
- Graduate School of Brain Science, Doshisha University, Tatara Miyakodani, Kyotanabe, Kyoto, Japan
| |
Collapse
|
43
|
Campiglio M, Flucher BE. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 2015; 230:2019-31. [PMID: 25820299 PMCID: PMC4672716 DOI: 10.1002/jcp.24998] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein-protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein-protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity.
Collapse
Affiliation(s)
- Marta Campiglio
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| |
Collapse
|
44
|
Zhu L, McDavid S, Currie KPM. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA). PLoS One 2015. [PMID: 26222492 PMCID: PMC4519294 DOI: 10.1371/journal.pone.0134117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CaV2.2 (N-type) voltage-gated calcium channels (Ca2+ channels) play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. “Fast” voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of “slow” voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate “slow” inactivation of sodium channels, but little is known about if/how second messengers control “slow” inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA) dramatically prolonged recovery from “slow” inactivation, but an inactive control (4α-PMA) had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating “slow” inactivation. We postulate that the kinetics of recovery from “slow” inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah McDavid
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin P. M. Currie
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
45
|
Calloway N, Gouzer G, Xue M, Ryan TA. The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels. eLife 2015. [PMID: 26196145 PMCID: PMC4525472 DOI: 10.7554/elife.07728] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Presynaptic calcium channel function is critical for converting electrical information into chemical communication but the molecules in the active zone that sculpt this function are poorly understood. We show that Munc13, an active-zone protein essential for exocytosis, also controls presynaptic voltage-gated calcium channel (VGCC) function dictating their behavior during various forms of activity. We demonstrate that in vitro Munc13 interacts with voltage-VGCCs via a pair of basic residues in Munc13's C2B domain. We show that elimination of this interaction by either removal of Munc13 or replacement of Munc13 with a Munc13 C2B mutant alters synaptic VGCC's response to and recovery from high-frequency action potential bursts and alters calcium influx from single action potential stimuli. These studies illustrate a novel form of synaptic modulation and show that Munc13 is poised to profoundly impact information transfer at nerve terminals by controlling both vesicle priming and the trigger for exocytosis.
Collapse
Affiliation(s)
- Nathaniel Calloway
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Géraldine Gouzer
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Mingyu Xue
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
46
|
Dick IE, Limpitikul WB, Niu J, Banerjee R, Issa JB, Ben-Johny M, Adams PJ, Kang PW, Lee SR, Sang L, Yang W, Babich J, Zhang M, Bazazzi H, Yue NC, Tomaselli GF. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels (Austin) 2015; 10:20-32. [PMID: 26176690 DOI: 10.1080/19336950.2015.1051272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca(2+) signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field.
Collapse
Affiliation(s)
- Ivy E Dick
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Worawan B Limpitikul
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jacqueline Niu
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Rahul Banerjee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - John B Issa
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manu Ben-Johny
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Paul J Adams
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,b Kwantlen Polytechnic University ; Surrey , BC Canada
| | - Po Wei Kang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Shin Rong Lee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Lingjie Sang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Wanjun Yang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jennifer Babich
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manning Zhang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Hojjat Bazazzi
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Nancy C Yue
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Gordon F Tomaselli
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,c Division of Cardiology; Department of Medicine ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| |
Collapse
|
47
|
Yan J, Leal K, Magupalli VG, Nanou E, Martinez GQ, Scheuer T, Catterall WA. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol Cell Neurosci 2015; 63:124-31. [PMID: 25447945 DOI: 10.1016/j.mcn.2014.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/01/2022] Open
Abstract
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
Collapse
|
48
|
Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal. J Neurosci 2015; 35:4676-82. [PMID: 25788684 DOI: 10.1523/jneurosci.2695-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions.
Collapse
|
49
|
Regulation of GAP43/calmodulin complex formation via calcineurin-dependent mechanism in differentiated PC12 cells with altered PMCA isoforms composition. Mol Cell Biochem 2015; 407:251-62. [PMID: 26045175 PMCID: PMC4536269 DOI: 10.1007/s11010-015-2473-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/30/2015] [Indexed: 12/21/2022]
Abstract
Several lines of evidence suggest the contribution of age-related decline in plasma membrane calcium pump (PMCA) to the onset of neurodegenerative diseases. From four PMCA isoforms, PMCA2, and PMCA3 respond to a rapid removal of Ca2+ and are expressed predominantly in excitable cells. We have previously shown that suppression of neuron-specific PMCAs in differentiated PC12 cells accelerated cell differentiation, but increased apoptosis in PMCA2-deficient line. We also demonstrated that altered expression of voltage-dependent calcium channels correlated with their higher contribution to Ca2+ influx, which varied between PMCA-reduced lines. Here, we propose a mechanism unique for differentiated PC12 cells by which PMCA2 and PMCA3 regulate pGAP43/GAP43 ratio and the interaction between GAP43 and calmodulin (CaM). Although down-regulation of PMCA2 or PMCA3 altered the content of GAP43/pGAP43, of paramount importance for the regulatory mechanism is a disruption of isoform-specific inhibitory PMCA/calcineurin interaction. In result, higher endogenous calcineurin (CaN) activity leads to hypophosphorylation of GAP43 in PMCA2- or PMCA3-deficient lines and intensification of GAP43/CaM complex formation, thus potentially limiting the availability of free CaM. In overall, our results indicate that both “fast” PMCA isoforms could actively regulate the local CaN function and CaN-downstream processes. In connection with our previous observations, we also suggest a negative feedback of cooperative action of CaM, GAP43, and CaN on P/Q and L-type channels activity. PMCAs- and CaN-dependent mechanism presented here, may signify a protective action against calcium overload in neuronal cells during aging, as well a potential way for decreasing neuronal cells vulnerability to neurodegenerative insults.
Collapse
|
50
|
Ben-Johny M, Yue DT. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. ACTA ACUST UNITED AC 2014; 143:679-92. [PMID: 24863929 PMCID: PMC4035741 DOI: 10.1085/jgp.201311153] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca(2+) sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca(2+) signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca(2+) feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation. We conclude by highlighting the considerable synergy between mechanism, biological insight, and promising therapeutics.
Collapse
Affiliation(s)
- Manu Ben-Johny
- Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|