1
|
Sen Gupta R, Islam SS, Pradeep D, Jose T, Govind Rajan A, Bose S. Sequential Interpenetrating Polymer Network Confines Shear-Aligned Graphene Oxide Liquid Crystals Enabling Precise Molecular Sieving. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503746. [PMID: 40376980 DOI: 10.1002/smll.202503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Indexed: 05/18/2025]
Abstract
Graphene oxide (GO)-based membranes hold great promise for revolutionizing nanofiltration, thanks to their seamless water transport and efficient ion and molecular sieving capabilities. Yet, their practical application remains limited due to structural instability under high pressure and swelling of nanochannels caused by water intercalation. This work overcomes these issues by aligning GO-based liquid crystals via shear forces and stabilizing them with a sequential interpenetrating polymeric network (IPN) using electrostatic anchoring. The process preserves long-range order through nanoconfinement. Using dopamine and GO liquid crystals, a nematic phase is achieved at very low concentrations, unlike conventional approaches. Characterization via microscopy and spectroscopy confirms pore sizes of ∼7 nm due to nanomaterial inclusion. These highly ordered and structurally stable membranes demonstrate exceptional water flux (145 LMH) and >97% separation efficiency for monovalent/divalent salts, dyes, and antibiotics. Molecular dynamics (MD) simulations reveal reduced water flux upon confining rGO-I sheets in the IPN, scaling with rGO-I concentration, and show fewer ions within the membrane, supporting feed-side retention. These findings match experimental results. The membranes also display antifouling, chlorine resistance, antibacterial activity, and cytocompatibility. They remain stable over multiple uses and under harsh conditions, without swelling-demonstrating strong potential for large-scale, sustainable water treatment.
Collapse
Affiliation(s)
- Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Sk Safikul Islam
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, School of Engineering, Presidency University, Bangalore, 560064, India
| | - Dhondi Pradeep
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Theres Jose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| |
Collapse
|
2
|
Surat'man NEB, Quek XL, Wang N, Ye E, Xu J, Li Z, Li B. Sustainable nanofibrous membranes for air filtration, water purification and oil removal. NANOSCALE 2025; 17:6427-6447. [PMID: 39946160 DOI: 10.1039/d4nr04673k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The increasing demand for sustainable solutions to address environmental and energy challenges has driven the development of advanced materials. Among them, nanofibrous membranes have emerged due to their high surface area, tunable porosity and versatile mechanical properties. However, traditional nanofibrous membranes, made from petroleum-based synthetic polymers, pose significant environmental concerns due to their non-biodegradability and reliance on fossil resources. This paper reviews recent advancements in the development of sustainable nanofibrous membranes, focusing on the use of biobased and biodegradable materials, and circular design approaches aimed at reducing environmental impact throughout the membrane life cycle. Challenges associated with improving the mechanical strength and stability of biopolymer-based nanofibers and expanding application areas are discussed. By highlighting strategies to overcome these limitations, this review aims to provide insights into the future direction of sustainable nanofibrous membranes, paving the way for their broader adoption in eco-friendly technological solutions.
Collapse
Affiliation(s)
- Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Xin Lin Quek
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Nannan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
3
|
Upadhyay C, Ojha U. Carbohydrate-Based Reprocessable and Healable Covalent Adaptable Biofoams. Macromol Rapid Commun 2024; 45:e2400239. [PMID: 38794989 DOI: 10.1002/marc.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Indexed: 05/27/2024]
Abstract
Polymeric foams derived from bio-based resources and capable of self-healing and recycling ability are of great demand to fulfill various applications and address environmental concerns related to accumulation of plastic wastes. In this article, a set of polyester-based covalent adaptable biofoams (CABs) synthesized from carbohydrates and other bio-derived precursors under catalyst free conditions to offer a sustainable alternative to conventional toxic isocyanate-based polyurethane foams is reported. The dynamic β-keto carboxylate linkages present in these biofoams impart self-healing ability and recyclability to these samples. These CABs display adequate tensile properties especially compressive strength (≤123 MPa) and hysteresis behavior. The CABs swiftly stress relax at 150 °C and are reprocessable under similar temperature conditions. These biofoams have displayed potential for use as attachment on solar photovoltaics to augment the output efficiency. These CABs with limited swellability in polar protic solvents and adequate mechanical resilience are suitable for other commodity applications.
Collapse
Affiliation(s)
- Chandan Upadhyay
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh, 229304, India
| | - Umaprasana Ojha
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh, 229304, India
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni, Khordha, Odisha, 752050, India
| |
Collapse
|
4
|
Wang S, Feng H, Li B, Lim JYC, Rusli W, Zhu J, Hadjichristidis N, Li Z. Knoevenagel C═C Metathesis Enabled Glassy Vitrimers with High Rigidity, Toughness, and Malleability. J Am Chem Soc 2024; 146:16112-16118. [PMID: 38803151 PMCID: PMC11177252 DOI: 10.1021/jacs.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Thermosets, characterized by their permanent cross-linked networks, present significant challenges in recyclability and brittleness. In this work, we explore a polarized Knoevenagel C═C metathesis reaction for the development of rigid yet tough and malleable thermosets. Initial investigation on small molecule model reactions reveals the feasibility of conducting the base-catalyzed C═C metathesis reaction in a solvent-free environment. Subsequently, thermosetting poly(α-cyanocinnamate)s (PCCs) were synthesized via Knoevenagel condensation between a triarm cyanoacetate star and a dialdehyde. The thermal and mechanical properties of the developed PCCs can be easily modulated by altering the structure of the dialdehyde. Remarkably, the introduction of ether groups into the PCC leads to a combination of high rigidity and toughness with Young's modulus of ∼1590 MPa, an elongation at break of ∼79%, and a toughness reaching ∼30 MJ m3. These values are competitive to traditional thermosets, in Young's modulus but far exceed them in ductility and toughness. Moreover, the C═C metathesis facilitates stress relaxation within the bulk polymer networks, thus rendering PCCs excellent malleability and reprocessability. This work overcomes the traditional limitations of thermosets, introducing groundbreaking insights for the design of rigid yet tough and malleable thermosets, and contributing significantly to the sustainability of materials.
Collapse
Affiliation(s)
- Sheng Wang
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongzhi Feng
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Bofan Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jason Y. C. Lim
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wendy Rusli
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jin Zhu
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Physical Sciences and Engineering Division,
KAUST Catalysis Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zibiao Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117576, Republic
of Singapore
| |
Collapse
|
5
|
Feng H, Wang S, Lim JYC, Li B, Rusli W, Liu F, Hadjichristidis N, Li Z, Zhu J. Catalyst-Free α-Acetyl Cinnamate/Acetoacetate Exchange to Enable High Creep-Resistant Vitrimers. Angew Chem Int Ed Engl 2024; 63:e202400955. [PMID: 38489506 DOI: 10.1002/anie.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Vitrimers represent an emerging class of polymeric materials that combine the desirable characteristics of both thermoplastics and thermosets achieved through the design of dynamic covalent bonds within the polymer networks. However, these materials are prone to creep due to the inherent instability of dynamic covalent bonds. Consequently, there are pressing demands for the development of robust and stable dynamic covalent chemistries. Here, we report a catalyst-free α-acetyl cinnamate/acetoacetate (α-AC/A) exchange reaction to develop vitrimers with remarkable creep resistance. Small-molecule model studies revealed that the α-AC/A exchange occurred at temperatures above 140 °C in bulk, whereas at 120 °C, this reaction was absent. For demonstration in the case of polymers, copolymers derived from common vinyl monomers were crosslinked with terephthalaldehyde to produce α-AC/A vitrimers with tunable thermal and mechanical performance. All resulting α-AC/A vitrimers exhibited high stability, especially in terms of creep resistance at 120 °C, while retaining commendable reprocessability when subjected to high temperatures. This work showcases the α-AC/A exchange reaction as a novel and robust dynamic covalent chemistry capable of imparting both reprocessability and high stability to cross-linked networks.
Collapse
Affiliation(s)
- Hongzhi Feng
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wendy Rusli
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Feng Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| |
Collapse
|
6
|
Wang S, Feng H, Lim JYC, Li K, Li B, Mah JJQ, Xing Z, Zhu J, Loh XJ, Li Z. Recyclable, Malleable, and Strong Thermosets Enabled by Knoevenagel Adducts. J Am Chem Soc 2024; 146:9920-9927. [PMID: 38557104 DOI: 10.1021/jacs.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Plastic recycling is critical for waste management and achieving a circular economy, but it entails difficult trade-offs between performance and recyclability. Here, we report a thermoset, poly(α-cyanocinnamate) (PCC), synthesized using Knoevenagel condensation between terephthalaldehyde (TPA) and a triarm cyanoacetate star, that tackles this difficulty by harnessing its intrinsically conjugated and dynamic chemical characteristics. PCCs exhibit extraordinary thermal and mechanical properties with a typical Tg of ∼178 °C, Young's modulus of 3.8 GPa, and tensile strength of 102 MPa, along with remarkable flexibility and dimensional and chemical stabilities. Furthermore, end-of-life PCCs can be selectively degraded and partially recycled back into one starting monomer TPA for a new production cycle or reprocessed through dynamic exchange aided by cyanoacetate chain-ends. This study lays the scientific groundwork for the design of robust and recyclable thermosets, with transformative potential in plastic engineering.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Hongzhi Feng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Justin J Q Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhenxiang Xing
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
7
|
Khanzada NK, Al-Juboori RA, Khatri M, Ahmed FE, Ibrahim Y, Hilal N. Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. MEMBRANES 2024; 14:52. [PMID: 38392679 PMCID: PMC10890584 DOI: 10.3390/membranes14020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Membrane technology has shown a promising role in combating water scarcity, a globally faced challenge. However, the disposal of end-of-life membrane modules is problematic as the current practices include incineration and landfills as their final fate. In addition, the increase in population and lifestyle advancement have significantly enhanced waste generation, thus overwhelming landfills and exacerbating environmental repercussions and resource scarcity. These practices are neither economically nor environmentally sustainable. Recycling membranes and utilizing recycled material for their manufacturing is seen as a potential approach to address the aforementioned challenges. Depending on physiochemical conditions, the end-of-life membrane could be reutilized for similar, upgraded, and downgraded operations, thus extending the membrane lifespan while mitigating the environmental impact that occurred due to their disposal and new membrane preparation for similar purposes. Likewise, using recycled waste such as polystyrene, polyethylene terephthalate, polyvinyl chloride, tire rubber, keratin, and cellulose and their derivates for fabricating the membranes can significantly enhance environmental sustainability. This study advocates for and supports the integration of sustainability concepts into membrane technology by presenting the research carried out in this area and rigorously assessing the achieved progress. The membranes' recycling and their fabrication utilizing recycled waste materials are of special interest in this work. Furthermore, this study offers guidance for future research endeavors aimed at promoting environmental sustainability.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Farah Ejaz Ahmed
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
8
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
9
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|