1
|
Wu X, Borjihan Q, Su Y, Bai H, Hu X, Wang X, Kang J, Dong A, Yang YW. Supramolecular Switching-Enabled Quorum Sensing Trap for Pathogen-Specific Recognition and Eradication to Treat Enteritis. J Am Chem Soc 2024; 146:35402-35415. [PMID: 39665393 DOI: 10.1021/jacs.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance. Herein, we utilize bacterial quorum sensing (QS), a universal mechanism for regulating community behavior, to develop a supramolecular QS trap by encapsulating cucurbit[7]uril (CB[7]) on 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) to form a supramolecular switch ([VPIM]Br⊂CB[7]) through host-guest interactions followed by grafting it onto bacterial cell surfaces using atom transfer radical polymerization. Subsequently, the matched pathogens are recognized and aggregated through interbacterial QS signals. Furthermore, the addition of amantadine (AD) facilitates the release of [VPIM]Br by competitive binding of CB[7] on [VPIM]Br⊂CB[7] for sterilization. This QS trap specifically triggers the self-aggregation and efficient elimination of matched bacteria. The [VPIM]Br⊂CB[7]-based trap can increase the diversity and abundance of intestinal microorganisms in mice, effectively treating Escherichia coli K88-induced intestinal damage without perturbing gut microbiota balance. This supramolecular-switched QS trap opens up a promising avenue to specifically recognize and eradicate pathogens for the antibiotic-free treatment of intestinal bacterial infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, P. R. China
| | - Yueying Su
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xinshang Hu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Pan Z, Dai C, Li W. Material-based treatment strategies against intraosseous implant biofilm infection. Biochem Biophys Rep 2024; 39:101764. [PMID: 39040541 PMCID: PMC11261528 DOI: 10.1016/j.bbrep.2024.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Implant-associated infections present a significant clinical obstacle for orthopedic practitioners, with bacterial biofilm formation serving as a pivotal factor in the initiation, progression, and management of such infections. Conventional approaches have proven inadequate in fully eradicating biofilm-related infections. Consequently, novel material-based therapeutic strategies have been developed, encompassing the utilization of antimicrobial agents, delivery vehicles, and synergistic antibacterial systems. In this review, we provide a succinct overview of recent advancements in anti-biofilm strategies, with the aim of offering insights that may aid in the treatment of intraosseous implant infections.
Collapse
Affiliation(s)
- Zhuoer Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
| | - Chengxin Dai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
| |
Collapse
|
3
|
Talaat R, Abu El-Naga MN, El-Bialy HAA, El-Fouly MZ, Abouzeid MA. Quenching of quorum sensing in multi-drug resistant Pseudomonas aeruginosa: insights on halo-bacterial metabolites and gamma irradiation as channels inhibitors. Ann Clin Microbiol Antimicrob 2024; 23:31. [PMID: 38600513 PMCID: PMC11007959 DOI: 10.1186/s12941-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. METHODS The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. RESULTS The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC-ESI-MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. CONCLUSION QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.
Collapse
Affiliation(s)
- Reham Talaat
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed N Abu El-Naga
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Abd Alla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohie Z El-Fouly
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed A Abouzeid
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
4
|
Gorgan M, Vanunu Ofri S, Engler ER, Yehuda A, Hutnick E, Hayouka Z, Bertucci MA. The importance of the PapR 7 C-terminus and amide protons in mediating quorum sensing in Bacilluscereus. Res Microbiol 2023; 174:104139. [PMID: 37758114 DOI: 10.1016/j.resmic.2023.104139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
The opportunistic human pathogen Bacillus cereus controls the expression of key infection-promoting phenotypes using bacterial quorum sensing (QS). QS signal transduction within the species is controlled by an autoinducing peptide, PapR7, and its cognate receptor, PlcR, indicating that the PlcR:PapR interface is a prime target for QS inhibitor development. The C-terminal region of the peptide (PapR7; ADLPFEF) has been successfully employed as a scaffold to develop potent QS modulators. Despite the noted importance of the C-terminal carboxylate and amide protons in crystallographic data, their role in QS activity has yet to be explored. In this study, an N-methyl scan of PapR7 was conducted in conjunction with a C-terminal modification of previously identified B. cereus QS inhibitors. The results indicate that the amide proton at Glu6 and the C-terminal carboxylate are important for effective QS inhibition of the PlcR regulon. Through β-galactosidase and hemolysis assays, a series of QS inhibitors were discovered, including several capable of inhibiting QS with nanomolar potency. These inhibitors, along with the structure-activity data reported, will serve as valuable tools for disrupting the B. cereus QS pathway towards developing novel anti-infective strategies.
Collapse
Affiliation(s)
- Michael Gorgan
- Department of Chemistry, Lafayette College, 701 Sullivan Rd., Easton, PA 18042, United States
| | - Shahar Vanunu Ofri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Emilee R Engler
- Department of Chemistry, Moravian University, 1200 Main St., Bethlehem, PA 18018, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elizabeth Hutnick
- Department of Chemistry, Moravian University, 1200 Main St., Bethlehem, PA 18018, United States
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Michael A Bertucci
- Department of Chemistry, Lafayette College, 701 Sullivan Rd., Easton, PA 18042, United States.
| |
Collapse
|