1
|
Li Z, Wu C, Cai X, Song Y, Zheng X, He Y, Song G. Characterization of OXA232-Producing Carbapenem-Resistant Klebsiella pneumoniae: Genomic Analysis and Virulence Assessment. Pol J Microbiol 2025; 74:82-94. [PMID: 40146795 PMCID: PMC11949386 DOI: 10.33073/pjm-2025-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025] Open
Abstract
Globally, the infection rate of carbapenem-resistant Klebsiella pneumoniae (CRKP) producing OXA-48-like carbapenemase is increasing, posing a significant public health threat due to its high antibiotic resistance. Between December 2019 and April 2023, ten CRKP strains carrying the OXA-48-like carbapenemase were isolated from inpatients at the First Affiliated Hospital of Kunming Medical University. Wholegenome sequencing (WGS) revealed that all strains carried the OXA-232 gene, a variant of OXA-48-like, located on the non-conjugative ColKP3 plasmid. Sequence typing identified nine strains as ST231 and one as ST11. The ST231 strains carried common virulence genes, including yersiniabactin (ybtA, fyuA, irp2) and aerobactin (iucABCD, iutA), while the ST11 strain carried high-virulence genes (rmpA, rmpA2, peg-344) as well as KPC-2 and OXA-232 carbapenemase genes on separate plasmids, suggesting that CRKP can harbor multiple plasmids with carbapenemase genes. Sequence typing of 264 global ST231 CRKP isolates (n = 264) showed a distinct clonal relationship between our strains and Indian CRKP isolates, indicating potential cross-border transmission. The virulence potential and immune response of the ST231 strains were assessed using a mouse respiratory infection model. The concentrations of inflammatory factors CCL2/MCP-1, IL-6, and TNF-α in the alveolar lavage fluid and blood of the model mice were detected. Combined with the pathological analysis of lung and liver tissues, it reveals variability in virulence and immune response despite carrying identical resistance and virulence genes. This underscores the urgent need for monitoring and tailored public health strategies to combat the global spread of drug-resistant strains.
Collapse
Affiliation(s)
- Zhouxun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
- Department of Nuclear Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Chunyan Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
| | - Xuemei Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
| | - Yongli Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
| | - Xingping Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
- Department of Transfusion Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yuan He
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University; Yunnan Key Laboratory of Laboratory Medicine; Yunnan Province Clinical Research Center for Laboratory Medicine; Kunming, China
| |
Collapse
|
2
|
Aswal M, Singh N, Singhal N, Kumar M. An integrated proteo-transcriptomics approach reveals novel drug targets against multidrug resistant Escherichia coli. Front Microbiol 2025; 16:1531739. [PMID: 40071204 PMCID: PMC11893563 DOI: 10.3389/fmicb.2025.1531739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Infections due to multidrug-resistant (MDR) Escherichia coli are associated with severe morbidity and mortality, worldwide. Microbial drug resistance is a complex phenomenon which is conditioned by an interplay of several genomic, transcriptomic and proteomic factors. Here, we have conducted an integrated transcriptomics and proteomics analysis of MDR E. coli to identify genes which are differentially expressed at both mRNA and protein levels. Using RNA-Seq and SWATH-LC MS/MS it was discerned that 763 genes/proteins exhibited differential expression. Of these, 52 genes showed concordance in differential expression at both mRNA and protein levels with 41 genes exhibiting overexpression and 11 genes exhibiting under expression. Bioinformatic analysis using GO-terms, COG and KEGG functional annotations revealed that the concordantly overexpressed genes of MDR E. coli were involved primarily in biosynthesis of secondary metabolites, aminoacyl-tRNAs and ribosomes. Protein-protein interaction (PPI) network analysis of the concordantly overexpressed genes revealed 81 PPI networks and 10 hub proteins. The hub proteins (rpsI, aspS, valS, lysS, accC, topA, rpmG, rpsR, lysU, and spmB) were found to be involved in aminoacylation of tRNA and lysyl-tRNA and, translation. Further, it was discerned that three hub proteins - smpB, rpsR, and topA were non homologous to human proteins and were involved in several biological pathways directly and/or indirectly related to antibiotic stress. Also, absence of homology ensures a little cross-reactivity of their inhibitors/drugs with human proteins and undesirable side effects. Thus, these proteins might be explored as novel drug targets against both drug-resistant and -sensitive populations of E. coli.
Collapse
Affiliation(s)
- Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Nirpendra Singh
- Institute of Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Ogundare ST, Fasina FO, Makumbi JP, van der Zel GA, Geertsma PF, Kock MM, Smith AM, Ehlers MM. Epidemiology and antimicrobial resistance profiles of pathogenic Escherichia coli from commercial swine and poultry abattoirs and farms in South Africa: A One Health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175705. [PMID: 39181266 DOI: 10.1016/j.scitotenv.2024.175705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Pathogenic Escherichia coli (PEC) are important foodborne bacteria that can cause severe illness in humans. The PECs thrive within the intestines of humans as well as animals and may contaminate multiple ecosystems, including food and water, via faecal transmission. Abattoir and farm employees are at high risk of PEC exposure, which could translate to community risk through person-to-person contact. To determine the epidemiology and resistome of PECs in Gauteng and Limpopo provinces of South Africa, 198 swine faecal samples, 220 poultry cloacal swabs, 108 human hand swabs, 11 run-off water samples from abattoirs and farms were collected from four swine and five poultry commercial abattoirs and two swine farms. One effluent sample each was collected from four wastewater treatment plants (WWTP) and a tertiary hospital setting. Phenotypic and genotypic techniques were used including polymerase chain reaction, pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Results showed EHEC and EPEC prevalence was 4.1 % (22/542) and 20.8 % (113/542), respectively, with the O26 serogroup detected the most in PEC isolates. According to the PFGE dendrogram, isolates from poultry, human hand swabs and run-off water clustered together. Diverse virulence factors such as the novel stx2k subtype and eae genes were detected among the 36 representative PEC isolates according to WGS. The results showed that 66.7 % (24/36) of sequenced PECs presented with multi-drug resistance (MDR) to β-lactamase 13.9 % (5/36), aminoglycoside 61.1 % (22/36), tetracycline 41.7 % (15/36) and quinolones 38.9 % (14/36). No colistin nor carbapenem resistance was detected. Sequence types (STs) associated with MDR in this study were: ST752, ST189, ST206, ST10, ST48 and ST38. The findings highlight the threat of zoonotic pathogens to close human contacts and the need for enhanced surveillance to mitigate the spread of MDR foodborne PECs.
Collapse
Affiliation(s)
- Samuel T Ogundare
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Folorunso O Fasina
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; Food and Agriculture Organisation of the United Nations, FAO Headquarters, Rome, Italy
| | - John-Paul Makumbi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gerbrand A van der Zel
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Peter F Geertsma
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| | - Anthony M Smith
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
4
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
5
|
Rodríguez D, Lence E, Vázquez-Ucha JC, Beceiro A, González-Bello C. Novel Penicillin-Based Sulfone-Siderophore Conjugates for Restoring β-Lactam Antibiotic Efficacy. ACS OMEGA 2024; 9:26484-26494. [PMID: 38911797 PMCID: PMC11191083 DOI: 10.1021/acsomega.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2-8) were synthesized and assayed in vitro. The results on the ability of derivatives 2-8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Collapse
Affiliation(s)
- Diana Rodríguez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Emilio Lence
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan C. Vázquez-Ucha
- Servicio
de Microbiología, Complexo Hospitalario Universitario da Coruña
(CHUAC), Instituto de Investigación
Biomédica da Coruña (INIBIC), Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Alejandro Beceiro
- Servicio
de Microbiología, Complexo Hospitalario Universitario da Coruña
(CHUAC), Instituto de Investigación
Biomédica da Coruña (INIBIC), Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Concepción González-Bello
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Morales L, Cobo A, Frías MP, Gálvez A, Ortega E. The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics (Basel) 2024; 13:429. [PMID: 38786157 PMCID: PMC11117780 DOI: 10.3390/antibiotics13050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for blaOXA-23 and blaNDM-1 genes among the A. baumannii samples, one resistance gene (blaCTX-M) among E. coli, and two genetic determinants (blaCTX-M and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of blaVEB and blaGES genes, as well as between the aztreonam resistance phenotype and the presence of blaGES gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.
Collapse
Affiliation(s)
- Laura Morales
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - Antonio Cobo
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - María Pilar Frías
- Department of Statistics and Operation Research, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain;
| | - Antonio Gálvez
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| | - Elena Ortega
- Microbiolgy Unit, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (L.M.); (A.C.); (A.G.)
| |
Collapse
|
7
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
8
|
Azwai SM, Lawila AF, Eshamah HL, Sherif JA, Farag SA, Naas HT, Garbaj AM, Salabi AAE, Gammoudi FT, Eldaghayes IM. Antimicrobial susceptibility profile of Klebsiella pneumoniae isolated from some dairy products in Libya as a foodborne pathogen. Vet World 2024; 17:1168-1176. [PMID: 38911073 PMCID: PMC11188881 DOI: 10.14202/vetworld.2024.1168-1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Klebsiella pneumoniae is one of the most common causes of clinical and asymptomatic mastitis in dairy cattle, as well as in milk and dairy products that affect milk quality. Mastitis caused by K. pneumoniae is even more serious due to its poor response to antibiotic therapy. The aim of this study was to detect and identify the presence of K. pneumoniae in milk and dairy products produced in Libya. Materials and Methods A total of 234 samples were randomly collected from various locations in Libya. Samples were examined for the presence of K. pneumoniae using conventional cultural techniques, including cultivation in violet red bile agar plus 4-methylumbelliferyl-ß-D-glucuronide broth and CHROM agar, followed by polymerase chain reaction identification and partial sequencing of 16S rRNA. Results Of the 234 samples of milk and dairy products collected, 16 (6.8%) isolates revealed mucoid colonies on agar media that were phenotypically suggested to be K. pneumoniae. Identification of isolates was confirmed using molecular techniques (16S rRNA). Among the examined samples, K. pneumoniae was recovered from camel's milk, raw cow's milk, raw fermented milk, Maasora cheese, Ricotta cheese, soft cheese, full cream milk powder, milk powder infant formula, cereal baby food, and growing-up formula. Antibiotic susceptibility testing was performed on 12 of the 16 K. pneumoniae isolates, and the results showed that K. pneumoniae isolates were resistant to more than eight antibiotics; interestingly, two isolates showed metallo-beta-lactamase (MBL) production. Conclusion K. pneumoniae is considered a risk to human health because many of these products do not comply with the microbiological criteria of international and/or Libyan standards. This study emphasized the relationship between K. pneumoniae and raw milk, cheese, milk powder, and infant milk retailed in Libya. There is a need to take the necessary measures to ensure effective hygiene practices during production in dairy factories, handling, and distribution on the market, in particular at a small local production scale.
Collapse
Affiliation(s)
- Salah M. Azwai
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Hanan L. Eshamah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Jihan A. Sherif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Samira A. Farag
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Hesham T. Naas
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Aboubaker M. Garbaj
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Allaaeddin A. El Salabi
- Department of Public Health, Faculty of Medical Technology, University of Tripoli, Tripoli, Libya
| | - Fatim T. Gammoudi
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
9
|
Bo L, Sun H, Li YD, Zhu J, Wurpel JND, Lin H, Chen ZS. Combating antimicrobial resistance: the silent war. Front Pharmacol 2024; 15:1347750. [PMID: 38420197 PMCID: PMC10899355 DOI: 10.3389/fphar.2024.1347750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Once hailed as miraculous solutions, antibiotics no longer hold that status. The excessive use of antibiotics across human healthcare, agriculture, and animal husbandry has given rise to a broad array of multidrug-resistant (MDR) pathogens, posing formidable treatment challenges. Antimicrobial resistance (AMR) has evolved into a pressing global health crisis, linked to elevated mortality rates in the modern medical era. Additionally, the absence of effective antibiotics introduces substantial risks to medical and surgical procedures. The dwindling interest of pharmaceutical industries in developing new antibiotics against MDR pathogens has aggravated the scarcity issue, resulting in an exceedingly limited pipeline of new antibiotics. Given these circumstances, the imperative to devise novel strategies to combat perilous MDR pathogens has become paramount. Contemporary research has unveiled several promising avenues for addressing this challenge. The article provides a comprehensive overview of these innovative therapeutic approaches, highlighting their mechanisms of action, benefits, and drawbacks.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jonathan Zhu
- Carle Place Middle and High School, Carle Place, NY, United States
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
10
|
Dhara L, Tripathi A. Contribution of genetic factors towards cefotaxime and ciprofloxacin resistance development among Extended spectrum beta-lactamase producing-Quinolone resistant pathogenic Enterobacteriaceae. Gene 2024; 893:147921. [PMID: 37884102 DOI: 10.1016/j.gene.2023.147921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
β-lactams and quinolones are widely utilised to treat pathogenic Enterobacterial isolates worldwide. Due to improper use of these antibiotics, both ESBL producing and quinolone resistant (ESBL-QR) pathogenic bacteria have emerged. Nature of contribution of beta-lactamase (bla)/quinolone resistant (QR) genes, efflux pumps (AcrAB-TolC) over-expression and outer membrane proteins (OMPs) /porin loss/reduction and their combinations towards development of this phenotype were explored in this study. Kirby-Bauer disc diffusion method was used for phenotypic characterization of these bacteria and minimum inhibitory concentration of cefotaxime and ciprofloxacin was determined by broth micro dilution assay. Presence of bla, QR, gyrA/B genes was examined by PCR; acrB upregulation by real-time quantitative PCR and porin loss/reduction by SDS-PAGE. Based on antibiogram, phenotypic categorization of 715 non-duplicate clinical isolates was: ESBL+QR+ (n = 265), ESBL+QR- (n = 6), ESBL-QR+ (n = 346) and ESBL-QR-(n = 11). Increased OmpF/K35 and OmpC/K36 reduction, acrB up-regulation, prevalence of bla, QR genes and gyrA/B mutation was observed among the groups in following order: ESBL+QR+> ESBL-QR+> ESBL+QR-> ESBL-QR-. Presence of bla gene alone or combined porin loss and efflux pump upregulation or their combination contributed most for development of a highest level of cefotaxime resistance of ESBL+QR+ isolates. Similarly, combined presence of QR genes, porin loss/reduction, efflux pump upregulation and gyrA/B mutation contributed towards highest ciprofloxacin resistance development of these isolates.
Collapse
Affiliation(s)
- Lena Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, India.
| |
Collapse
|
11
|
Babele P, Midha MK, Rao KVS, Kumar A. Temporal Profiling of Host Proteome against Different M. tuberculosis Strains Reveals Delayed Epigenetic Orchestration. Microorganisms 2023; 11:2998. [PMID: 38138142 PMCID: PMC10745383 DOI: 10.3390/microorganisms11122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Apart from being preventable and treatable, tuberculosis is the deadliest bacterial disease afflicting humankind owing to its ability to evade host defence responses, many of which are controlled by epigenetic mechanisms. Here, we report the temporal dynamics of the proteome of macrophage-like host cells after infecting them for 6, 18, 30, and 42 h with two laboratory strains (H37Ra and H37Rv) and two clinical strains (BND433 and JAL2287) of Mycobacterium tuberculosis (MTB). Using SWATH-MS, the proteins characterized at the onset of infection broadly represented oxidative stress and cell cytoskeleton processes. Intermediary and later stages of infection are accompanied by a reshaping of the combination of proteins implicated in histone stability, gene expression, and protein trafficking. This study provides strain-specific and time-specific variations in the proteome of the host, which might further the development of host-directed therapeutics and diagnostic tools against the pathogen. Also, our findings accentuate the importance of proteomic tools in delineating the complex recalibration of the host defence enabled as an effect of MTB infection. To the best of our knowledge, this is the first comprehensive proteomic account of the host response to avirulent and virulent strains of MTB at different time periods of the life span of macrophage-like cells. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD022352.
Collapse
Affiliation(s)
- Prabhakar Babele
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| | | | - Kanury V. S. Rao
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| | - Ajay Kumar
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| |
Collapse
|