1
|
Sridharan Iyer S, Wu J, Pollard TD, Voth GA. Molecular mechanism of Arp2/3 complex activation by nucleation-promoting factors and an actin monomer. Proc Natl Acad Sci U S A 2025; 122:e2421467122. [PMID: 40048273 PMCID: PMC11912402 DOI: 10.1073/pnas.2421467122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025] Open
Abstract
Arp (actin-related protein) 2/3 complex nucleates actin filament branches on the sides of preexisting actin filaments during cell and organelle movements. We used computer simulations of mammalian Arp2/3 complex to address fundamental questions about the mechanism. Metadynamics and umbrella free energy sampling simulations of the pathway revealed that a clash between the D-loop of Arp2 and Arp3 produces an energy barrier of 20 ± 6 kcal/mol between the inactive splayed and active short-pitch conformations of Arp2/3 complex. Atomistic molecular dynamics simulations showed that binding the CA motif of the nucleation-promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASp) to inactive, splayed Arp2/3 complex shifts it toward the short-pitch active conformation and opens a binding site for an actin monomer on Arp3. Other simulations showed that this actin monomer stabilizes a transition state of Arp2/3 complex. These observations together with prior experimental work provide insights required to propose a physically grounded pathway for actin filament branch formation.
Collapse
Affiliation(s)
- Sahithya Sridharan Iyer
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Cell Biology, Yale University, New Haven, CT06511
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Saks AJ, Barrie KR, Rebowski G, Dominguez R. NPF binding to Arp2 is allosterically linked to the release of ArpC5's N-terminal tail and conformational changes in Arp2/3 complex. Proc Natl Acad Sci U S A 2025; 122:e2421557122. [PMID: 40042350 PMCID: PMC11873952 DOI: 10.1073/pnas.2421557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
Arp2/3 complex generates branched actin networks essential for numerous motile functions of the cell. It comprises seven subunits: actin-related proteins (Arps) 2 and 3 and five scaffolding subunits (ArpC1-5). The complex adopts two major conformations: inactive, with the Arps interacting end-to-end, and active, with the Arps aligned side-by-side like subunits in the actin filament. Activation involves several cofactors, including ATP, WASP-family nucleation-promoting factors (NPFs), actin monomers, and the mother actin filament. NPFs bind to two sites, one on Arp2-ArpC1 and one on Arp3, delivering actin subunits at the barbed end of the Arps to initiate branch elongation. However, the mechanisms by which each NPF drives the equilibrium toward activation remain unclear. We present two cryo-electron microscopy (cryo-EM) structures of Arp2/3 complex at 2.9-Å resolution: one with NPFs bound to Arp3 and ArpC1 but not Arp2 and another with NPFs bound to Arp3 and Arp2-ArpC1. The structures reveal that NPF binding to Arp2 is allosterically linked to the release of ArpC5's N-terminal tail from Arp2 and conformational changes in Arp2, including closure of its ATP-binding cleft and partial rotation and translation toward its position in the active complex at the branch. Previous work identified another allosteric switch linking NPF binding to Arp3 with the release of its inhibitory C-terminal tail, which we also observe. In summary, both NPF-binding sites induce allosteric changes in Arp2/3 complex, collectively shifting the equilibrium toward activation.
Collapse
Affiliation(s)
- Andrew J. Saks
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kyle R. Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Biochemistry, Biophysics, Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Biochemistry, Biophysics, Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
3
|
Nakajima D, Takahashi N, Inoue T, Nomura SIM, Matsubayashi HT. A unified purification method for actin-binding proteins using a TEV-cleavable His-Strep-tag. MethodsX 2024; 13:102884. [PMID: 39224451 PMCID: PMC11367271 DOI: 10.1016/j.mex.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The actin cytoskeleton governs the dynamic functions of cells, ranging from motility to phagocytosis and cell division. To elucidate the molecular mechanism, in vitro reconstructions of the actin cytoskeleton and its force generation process have played essential roles, highlighting the importance of efficient purification methods for actin-binding proteins. In this study, we introduce a unified purification method for actin-binding proteins, including capping protein (CP), cofilin, ADF, profilin, fascin, and VASP, key regulators in force generation of the actin cytoskeleton. Exploiting a His-Strep-tag combined with a TEV protease cleavage site, we purified these diverse actin-binding proteins through a simple two-column purification process: initial purification through a Strep-Tactin column and subsequent tag removal through the reverse purification by a Ni-NTA column. Biochemical and microscopic assays validated the functionality of the purified proteins, demonstrating the versatility of the approach. Our methods not only delineate critical steps for the efficient preparation of actin-binding proteins but also hold the potential to advance investigations of mutants, isoforms, various source species, and engineered proteins involved in actin cytoskeletal dynamics.•Unified purification method for various actin-binding proteins.•His-Strep-tag and TEV protease cleavage for efficient purification.•Functional validation through biochemical and microscopic assays.
Collapse
Affiliation(s)
- Daichi Nakajima
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01 Aramaki Aoba-ku, Mechanical Eng. Research Bldg. 2 (A 03), Sendai, Miyagi, 980-8579, Japan
| | - Nozomi Takahashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba 6-3 Aramaki Aoba-ku, Research Bldg. (G 06), Sendai, Miyagi, 980-8579, Japan
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 N. Wolfe St. 476 Rangos Building, Baltimore, MD, 21205, USA
| | - Shin-ichiro M. Nomura
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01 Aramaki Aoba-ku, Mechanical Eng. Research Bldg. 2 (A 03), Sendai, Miyagi, 980-8579, Japan
| | - Hideaki T. Matsubayashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba 6-3 Aramaki Aoba-ku, Research Bldg. (G 06), Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
4
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
5
|
Narvaez-Ortiz HY, Lynch MJ, Liu SL, Fries A, Nolen BJ. Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae. J Biol Chem 2024; 300:105766. [PMID: 38367669 PMCID: PMC10944109 DOI: 10.1016/j.jbc.2024.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
Collapse
Affiliation(s)
- Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Lynch
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Su-Ling Liu
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Adam Fries
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
6
|
McGuirk ER, Koundinya N, Nagarajan P, Padrick SB, Goode BL. Direct observation of cortactin protecting Arp2/3-actin filament branch junctions from GMF-mediated destabilization. Eur J Cell Biol 2024; 103:151378. [PMID: 38071835 PMCID: PMC10843626 DOI: 10.1016/j.ejcb.2023.151378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
How cells tightly control the formation and turnover of branched actin filament arrays to drive cell motility, endocytosis, and other cellular processes is still not well understood. Here, we investigated the mechanistic relationship between two binding partners of the Arp2/3 complex, glia maturation factor (GMF) and cortactin. Individually, GMF and cortactin have opposite effects on the stability of actin filament branches, but it is unknown how they work in concert with each other to govern branch turnover. Using TIRF microscopy, we observe that GMF's branch destabilizing activities are potently blocked by cortactin (IC50 = 1.3 nM) and that this inhibition requires direct interactions of cortactin with Arp2/3 complex. The simplest model that would explain these results is competition for binding Arp2/3 complex. However, we find that cortactin and GMF do not compete for free Arp2/3 complex in solution. Further, we use single molecule analysis to show that cortactin's on-rate (3 ×107 s-1 M-1) and off-rate (0.03 s-1) at branch junctions are minimally affected by excess GMF. Together, these results show that cortactin binds with high affinity to branch junctions, where it blocks the destabilizing effects of GMF, possibly by a mechanism that is allosteric in nature. In addition, the affinities we measure for cortactin at actin filament branch junctions (Kd = 0.9 nM) and filament sides (Kd = 206 nM) are approximately 20-fold stronger than previously reported. These observations contribute to an emerging view of molecular complexity in how Arp2/3 complex is regulated through the integration of multiple inputs.
Collapse
Affiliation(s)
- Emma R McGuirk
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Neha Koundinya
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
7
|
Ghasemi F, Cao L, Mladenov M, Guichard B, Way M, Jégou A, Romet-Lemonne G. Regeneration of actin filament branches from the same Arp2/3 complex. SCIENCE ADVANCES 2024; 10:eadj7681. [PMID: 38277459 PMCID: PMC10816697 DOI: 10.1126/sciadv.adj7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Branched actin filaments are found in many key cellular structures. Branches are nucleated by the Arp2/3 complex activated by nucleation-promoting factor (NPF) proteins and bound to the side of preexisting "mother" filaments. Over time, branches dissociate from their mother filament, leading to network reorganization and turnover, but this mechanism is less understood. Here, using microfluidics and purified proteins, we examined the dissociation of individual branches under controlled biochemical and mechanical conditions. We observe that the Arp2/3 complex remains bound to the mother filament after most debranching events, even when accelerated by force. Strikingly, this surviving Arp2/3 complex readily nucleates a new actin filament branch, without being activated anew by an NPF: It simply needs to exchange its nucleotide and bind an actin monomer. The protein glia maturation factor (GMF), which accelerates debranching, prevents branch renucleation. Our results suggest that actin filament renucleation can provide a self-repair mechanism, helping branched networks to sustain mechanical stress in cells over extended periods of time.
Collapse
Affiliation(s)
- Foad Ghasemi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - LuYan Cao
- The Francis Crick Institute, London, UK
| | | | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | |
Collapse
|
8
|
Graham K, Chandrasekaran A, Wang L, Yang N, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates mediate competition between actin branching and bundling. Proc Natl Acad Sci U S A 2024; 121:e2309152121. [PMID: 38207079 PMCID: PMC10801869 DOI: 10.1073/pnas.2309152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Cellular remodeling of actin networks underlies cell motility during key morphological events, from embryogenesis to metastasis. In these transformations, there is an inherent competition between actin branching and bundling, because steric clashes among branches create a mechanical barrier to bundling. Recently, liquid-like condensates consisting purely of proteins involved in either branching or bundling of the cytoskeleton have been found to catalyze their respective functions. Yet in the cell, proteins that drive branching and bundling are present simultaneously. In this complex environment, which factors determine whether a condensate drives filaments to branch or become bundled? To answer this question, we added the branched actin nucleator, Arp2/3, to condensates composed of VASP, an actin bundling protein. At low actin to VASP ratios, branching activity, mediated by Arp2/3, robustly inhibited VASP-mediated bundling of filaments, in agreement with agent-based simulations. In contrast, as the actin to VASP ratio increased, addition of Arp2/3 led to formation of aster-shaped structures, in which bundled filaments emerged from a branched actin core, analogous to filopodia emerging from a branched lamellipodial network. These results demonstrate that multi-component, liquid-like condensates can modulate the inherent competition between bundled and branched actin morphologies, leading to organized, higher-order structures, similar to those found in motile cells.
Collapse
Affiliation(s)
- Kristin Graham
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Noel Yang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| |
Collapse
|