1
|
Gerdes K. Mono- and multidomain defense toxins of the RelE/ParE superfamily. mBio 2025; 16:e0025825. [PMID: 39998207 PMCID: PMC11980606 DOI: 10.1128/mbio.00258-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Toxin-antitoxin (TA) modules are widely distributed across prokaryotes, often existing in large numbers despite their associated fitness costs. Most type II TA modules are bicistronic operons encoding a monodomain toxin and its cognate protein antitoxin. The RelE/ParE superfamily encompasses toxins with a conserved Barnase-EndoU-ColicinE5/D-RelE (BECR) fold. Yet, their cellular targets differ remarkably: RelE toxins function as ribosome-dependent RNases, while ParE toxins act as DNA gyrase inhibitors. Using a comprehensive bioinformatics approach, this study analyzed 13 BECR-fold toxin families as classified in the Pfam database. Intriguingly, the ParE family was found to include a subcluster of mRNA-cleaving toxins, challenging its conventional role as solely DNA-targeting. This study identified a novel tripartite operon encoding a PtuA-like defense ATPase, a homolog of type IV restriction endonucleases, and a RelE homolog, suggesting a coordinated role in defense mechanisms. Multidomain BECR-fold toxins, including transmembrane variants, were also discovered, extending the functional repertoire of type II TA modules to membrane-associated systems. These findings clarify the evolutionary relationships and functional diversity within the RelE/ParE superfamily and discover novel, putative defense systems that can now be investigated experimentally.IMPORTANCEToxin-antitoxin modules play critical roles in prokaryotic survival and adaptation, contributing to genome stabilization and defense against phages and invading plasmids. The RelE/ParE superfamily exemplifies the structural and functional diversity of these systems, with members targeting distinct cellular processes, such as translation and DNA supercoiling. By elucidating the relationships among the 13 BECR-fold toxin families, this study enhances our understanding of microbial resistance mechanisms and reveals potential new opportunities for research into prokaryotic defense and regulation. These insights may have significant implications for medical and biotechnological applications, particularly in understanding bacterial responses to genetic invaders.
Collapse
|
2
|
Humolli D, Piel D, Maffei E, Heyer Y, Agustoni E, Shaidullina A, Willi L, Imwinkelried P, Estermann F, Cuénod A, Buser DP, Alampi C, Chami M, Egli A, Hiller S, Dunne M, Harms A. Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions. PLoS Biol 2025; 23:e3003063. [PMID: 40193529 PMCID: PMC11990801 DOI: 10.1371/journal.pbio.3003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/11/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Research on bacteriophages, the viruses infecting bacteria, has fueled the development of modern molecular biology and inspired their therapeutic application to combat bacterial multidrug resistance. However, most work has so far focused on a few model phages which impedes direct applications of these findings in clinics and suggests that a vast potential of powerful molecular biology has remained untapped. We have therefore recently composed the BASEL collection of Escherichia coli phages (BActeriophage SElection for your Laboratory), which made a relevant diversity of phages infecting the E. coli K-12 laboratory strain accessible to the community. These phages are widely used, but their assorted diversity has remained limited by the E. coli K-12 host. We have therefore now genetically overcome the two major limitations of E. coli K-12, its lack of O-antigen glycans and the presence of resident bacterial immunity. Restoring O-antigen expression resulted in the isolation of diverse additional viral groups like Kagunavirus, Nonanavirus, Gordonclarkvirinae, and Gamaleyavirus, while eliminating all known antiviral defenses of E. coli K-12 additionally enabled us to isolate phages of Wifcevirus genus. Even though some of these viral groups appear to be common in nature, no phages from any of them had previously been isolated using E. coli laboratory strains, and they had thus remained largely understudied. Overall, 37 new phage isolates have been added to complete the BASEL collection. These phages were deeply characterized genomically and phenotypically with regard to host receptors, sensitivity to antiviral defense systems, and host range. Our results highlighted dominant roles of the O-antigen barrier for viral host recognition and of restriction-modification systems in bacterial immunity. We anticipate that the completed BASEL collection will propel research on phage-host interactions and their molecular mechanisms, deepening our understanding of viral ecology and fostering innovations in biotechnology and antimicrobial therapy.
Collapse
Affiliation(s)
- Dorentina Humolli
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Damien Piel
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Enea Maffei
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Aisylu Shaidullina
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Aline Cuénod
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | - Carola Alampi
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Alexander Harms
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Wittmers F, Poirier C, Bachy C, Eckmann C, Matantseva O, Carlson CA, Giovannoni SJ, Goodenough U, Worden AZ. Symbionts of predatory protists are widespread in the oceans and related to animal pathogens. Cell Host Microbe 2025; 33:182-199.e7. [PMID: 39947132 DOI: 10.1016/j.chom.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 05/09/2025]
Abstract
Protists are major predators of ocean microbial life, with an ancient history of entanglements with prokaryotes, but their delicate cell structures and recalcitrance to culturing hinder exploration of marine symbioses. We report that tiny oceanic protistan predators, specifically choanoflagellates-the closest living unicellular relatives of animals-and uncultivated MAST-3 form symbioses with four bacterial lineages related to animal symbionts. By targeting living phagotrophs on ship expeditions, we recovered genomes from physically associated uncultivated Legionellales and Rickettsiales. The evolutionary trajectories of Marinicoxiellaceae, Cosmosymbacterales, Simplirickettsiaceae, and previously named Gamibacteraceae vary, including host-engagement mechanisms unknown in marine bacteria, horizontally transferred genes that mediate pathogen-microbiome interactions, and nutritional pathways. These symbionts and hosts occur throughout subtropical and tropical oceans. Related bacteria were detected in public data from freshwater, fish, and human samples. Symbiont associations with animal-related protists, alongside relationships to animal pathogens, suggest an unexpectedly long history of shifting associations and possibilities for host expansion as environments change.
Collapse
Affiliation(s)
- Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Olga Matantseva
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Craig A Carlson
- The Marine Science Institute, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Ursula Goodenough
- Department of Biology, Washington University St. Louis, St. Louis, MO, USA
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany; Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Savinov A, Swanson S, Keating AE, Li GW. High-throughput discovery of inhibitory protein fragments with AlphaFold. Proc Natl Acad Sci U S A 2025; 122:e2322412122. [PMID: 39899719 PMCID: PMC11831152 DOI: 10.1073/pnas.2322412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
5
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
7
|
Chanin RB, West PT, Wirbel J, Gill MO, Green GZM, Park RM, Enright N, Miklos AM, Hickey AS, Brooks EF, Lum KK, Cristea IM, Bhatt AS. Intragenic DNA inversions expand bacterial coding capacity. Nature 2024; 634:234-242. [PMID: 39322669 DOI: 10.1038/s41586-024-07970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes1. Bacteria can generate heterogeneity through phase variation-a preprogrammed, reversible mechanism that alters gene expression levels across a population1. One well-studied type of phase variation involves enzyme-mediated inversion of specific regions of genomic DNA2. Frequently, these DNA inversions flip the orientation of promoters, turning transcription of adjacent coding regions on or off2. Through this mechanism, inversion can affect fitness, survival or group dynamics3,4. Here, we describe the development of PhaVa, a computational tool that identifies DNA inversions using long-read datasets. We also identify 372 'intragenic invertons', a novel class of DNA inversions found entirely within genes, in genomes of bacterial and archaeal isolates. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We validate ten intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, and experimentally characterize an intragenic inverton in the thiamine biosynthesis gene thiC.
Collapse
Affiliation(s)
- Rachael B Chanin
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Patrick T West
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Jakob Wirbel
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Matthew O Gill
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gabriella Z M Green
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Ryan M Park
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nora Enright
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Arjun M Miklos
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Angela S Hickey
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Erin F Brooks
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ami S Bhatt
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Savinov A, Swanson S, Keating AE, Li GW. High-throughput discovery of inhibitory protein fragments with AlphaFold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572389. [PMID: 38187731 PMCID: PMC10769210 DOI: 10.1101/2023.12.19.572389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Gerdes K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024; 15:e0329323. [PMID: 38236063 PMCID: PMC10865869 DOI: 10.1128/mbio.03293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
Collapse
Affiliation(s)
- Kenn Gerdes
- Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark
| |
Collapse
|
10
|
Koonin EV, Krupovic M. New faces of prokaryotic mobile genetic elements: guide RNAs link transposition with host defense mechanisms. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 36:100473. [PMID: 37779558 PMCID: PMC10538440 DOI: 10.1016/j.coisb.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, 75015 Paris
| |
Collapse
|
11
|
Koonin EV. Antitoxins within toxins: A new theme in bacterial antivirus defense. Proc Natl Acad Sci U S A 2023; 120:e2311001120. [PMID: 37487075 PMCID: PMC10400984 DOI: 10.1073/pnas.2311001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894
| |
Collapse
|