1
|
Soffers JH, Beck E, Sytkowski DJ, Maughan ME, Devarakonda D, Zhu Y, Wilson B, David Chen YC, Erclik T, Truman JW, Skeath JB, Lacin H. A library of lineage-specific driver lines connects developing neuronal circuits to behavior in the Drosophila Ventral Nerve Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.27.625713. [PMID: 39651218 PMCID: PMC11623677 DOI: 10.1101/2024.11.27.625713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding developmental changes in neuronal lineages is crucial to elucidate how they assemble into functional neural networks. Studies investigating nervous system development in model systems have only focused on select regions of the central nervous system due to the limited availability of genetic drivers that target specific neuronal lineages throughout development and adult life. This has hindered our understanding of how distinct neuronal lineages interconnect to form neuronal circuits during development. Here, we present a split-GAL4 library composed of genetic driver lines, which we generated via editing the genomic locus of lineage-specific transcription factors and demonstrate that we can use this library to specifically target most individual neuronal hemilineages in the Drosophila ventral nerve cord (VNC) throughout development and into adulthood. Using these genetic driver lines, we found striking morphological changes in neuronal processes within a lineage during metamorphosis. We also demonstrated how neurochemical features of neuronal classes can be quickly assessed. Lastly, we documented behaviors elicited in response to optogenetic activation of individual neuronal lineages and generated a comprehensive lineage-behavior map of the entire fly VNC. Looking forward, this lineage-specific split-GAL4 driver library will provide the genetic tools needed to address the questions emerging from the analysis of the recent VNC connectome and transcriptome datasets.
Collapse
|
2
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Lehovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. RESEARCH SQUARE 2025:rs.3.rs-6099208. [PMID: 40162214 PMCID: PMC11952656 DOI: 10.21203/rs.3.rs-6099208/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B. Lehovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M. Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Gupta HP, Azevedo AW, Chen YCHD, Xing K, Sims PA, Varol E, Mann RS. Decoding neuronal wiring by joint inference of cell identity and synaptic connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.640006. [PMID: 40093165 PMCID: PMC11908227 DOI: 10.1101/2025.03.04.640006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Animal behaviors are executed by motor neurons (MNs), which receive information from complex pre-motor neuron (preMN) circuits and output commands to muscles. How motor circuits are established during development remains an important unsolved problem in neuroscience. Here we focus on the development of the motor circuits that control the movements of the adult legs in Drosophila melanogaster. After generating single-cell RNA sequencing (scRNAseq) datasets for leg MNs at multiple time points, we describe the time course of gene expression for multiple gene families. This analysis reveals that transcription factors (TFs) and cell adhesion molecules (CAMs) appear to drive the molecular diversity between individual MNs. In parallel, we introduce ConnectionMiner, a novel computational tool that integrates scRNAseq data with electron microscopy-derived connectomes. ConnectionMiner probabilistically refines ambiguous cell type annotations by leveraging neural wiring patterns, and, in turn, it identifies combinatorial gene expression signatures that correlate with synaptic connectivity strength. Applied to the Drosophila leg motor system, ConnectionMiner yields a comprehensive transcriptional annotation of both MNs and preMNs and uncovers candidate effector gene combinations that likely orchestrate the assembly of neural circuits from preMNs to MNs and ultimately to muscles.
Collapse
Affiliation(s)
| | - Anthony W. Azevedo
- Department of Neurobiology and Biophysics, University of Washington, WA, USA
| | | | - Kristi Xing
- Barnard College, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Erdem Varol
- Department of Computer Science & Engineering at Tandon School of Engineering, New York University, New York, NY, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Richard S. Mann
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Caspi-Lebovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640985. [PMID: 40060423 PMCID: PMC11888401 DOI: 10.1101/2025.03.01.640985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B. Caspi-Lebovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M. Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Ewen-Campen B, Joshi N, Hermon AS, Thakkar T, Zirin J, Perrimon N. A collection of split-Gal4 drivers targeting conserved signaling ligands in Drosophila. G3 (BETHESDA, MD.) 2025; 15:jkae276. [PMID: 39569452 PMCID: PMC11797011 DOI: 10.1093/g3journal/jkae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Communication between cells in metazoan organisms is mediated by a remarkably small number of highly conserved signaling pathways. Given this small number of signaling pathways, the existence of multiple related ligands for many of these pathways represents a key evolutionary innovation for encoding complexity into cell-cell signaling. Relatedly, crosstalk between pathways is another critical feature, which allows a modest number of pathways to ultimately generate an enormously diverse range of outcomes. It would thus be useful to have genetic tools to identify and manipulate not only those cells that express a given signaling ligand but also those cells that specifically coexpress pairs of signaling ligands. We present a collection of split-Gal4 knock-in lines targeting many of the ligands for highly conserved signaling pathways in Drosophila (Notch, Hedgehog, fibroblast growth factor (FGF), epidermal growth factor (EGF), transforming growth factor β (TGFβ), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Jun kinase (JNK), and platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-related receptor (PVR). We demonstrate that these lines faithfully recapitulate the endogenous expression pattern of their targets and that they can be used to identify cells and tissues that coexpress pairs of ligands. As a proof of principle, we demonstrate that the 4th chromosome TGFβ ligands myoglianin and maverick are broadly coexpressed in muscles and other tissues of both larva and adults and that the JAK/STAT ligands upd2 and upd3 are partially coexpressed from cells of the midgut following gut damage. Together with our previously collection of split-Gal4 lines targeting the 7 Wnt ligands, this resource allows Drosophila researchers to identify and genetically manipulate cells that specifically express pairs of conserved ligands from nearly all the major intercellular signaling pathways.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ashley Suraj Hermon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
6
|
Simon F, Holguera I, Chen YC, Malin J, Valentino P, Njoo-Deplante C, El-Danaf RN, Kapuralin K, Erclik T, Konstantinides N, Özel MN, Desplan C. Establishment of terminal selector combinations in optic lobe neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.05.578975. [PMID: 38370610 PMCID: PMC10871188 DOI: 10.1101/2024.02.05.578975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medulla is the part of the Drosophila optic lobe with the greatest neuronal diversity, in which the identity of each neuronal type is specified in progenitors and newborn neurons via the integration of temporal, spatial, and Notch-driven patterning mechanisms. This identity is maintained in differentiating and adult neurons by the expression of neuronal type-specific combinations of terminal selectors, which are transcription factors expressed continuously during development and in the adult that are thought to control all neuronal type-specific gene expression. However, how the patterning mechanisms establish terminal selector expression is unknown. We have previously characterized the temporal and Notch origin of medulla neurons. Here we have used single-cell mRNA-sequencing to characterize their spatial origins and identified two new spatial subdomains. Together, this makes the medulla the first complex brain structure for which the patterning mechanisms specifying the identity of each neuronal type are known. This knowledge allowed us to identify correlations between patterning information, terminal selector expression and neuronal features. Our results suggest that different subsets of the patterning information accessible to a given neuronal type control the expression of each of its terminal selectors and of modules of terminal features, including neurotransmitter identity. Therefore, the evolution of new neuronal types could rely on the acquisition of modules of neuronal features predetermined by their developmental origin.
Collapse
Affiliation(s)
- Félix Simon
- Department of Biology, New York University, New York, NY 10003, USA
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jennifer Malin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Priscilla Valentino
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Rana Naja El-Danaf
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Mehmet Neset Özel
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
El-Danaf RN, Kapuralin K, Rajesh R, Simon F, Drou N, Pinto-Teixeira F, Özel MN, Desplan C. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila. Nat Commun 2025; 16:698. [PMID: 39814708 PMCID: PMC11735856 DOI: 10.1038/s41467-025-56059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain. To address their origin, we used single-cell mRNA sequencing to define the transcriptome of LCN subtypes and identified lines that are expressed throughout their development. We show that LCNs originate from stem cells in four distinct brain regions exhibiting different modes of neurogenesis, including the ventral and dorsal tips of the outer proliferation center, the ventral superficial inner proliferation center and the central brain. We show that this convergence of similar neurons illustrates the complexity of generating neuronal diversity, and likely reflects the evolutionary origin of each subtype that detects a specific visual feature and might influence behaviors specific to each species.
Collapse
Affiliation(s)
- Rana Naja El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Félix Simon
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Nizar Drou
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Filipe Pinto-Teixeira
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Mehmet Neset Özel
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA.
| |
Collapse
|
8
|
Holguera I, Chen YC, Chen YCD, Simon F, Gaffney A, Rodas J, Córdoba S, Desplan C. Temporal and Notch identity determine layer targeting and synapse location of medulla neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631439. [PMID: 39829863 PMCID: PMC11741259 DOI: 10.1101/2025.01.06.631439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
How specification mechanisms that generate neural diversity translate into specific neuronal targeting, connectivity, and function in the adult brain is not understood. In the medulla region of the Drosophila optic lobe, neural progenitors generate different neurons in a fixed order by sequentially expressing a series of temporal transcription factors as they age. Then, Notch signaling in intermediate progenitors further diversifies neuronal progeny. By establishing the birth order of medulla neurons, we found that their temporal identity correlates with the depth of neuropil targeting in the adult brain, for both local interneurons and projection neurons. We show that this temporal identity-dependent targeting of projection neurons unfolds early in development and is genetically determined. By leveraging the Electron Microscopy reconstruction of the adult fly brain, we determined the synapse location of medulla neurons in the different optic lobe neuropils and find that it is significantly associated with both their temporal identity and Notch status. Moreover, we show that all the putative medulla neurons with the same predicted function share similar neuropil synapse location, indicating that ensembles of neuropil layers encode specific visual functions. In conclusion, we show that temporal identity and Notch status of medulla neurons can predict their neuropil synapse location and visual function, linking their developmental patterning with their specific connectivity and functional features in the adult brain.
Collapse
Affiliation(s)
- I. Holguera
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - Y-C. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Y-C-D. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - F. Simon
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - A.G. Gaffney
- Department of Biology, New York University, New York, NY 10003, USA
| | - J.D. Rodas
- Department of Biology, New York University, New York, NY 10003, USA
| | - S. Córdoba
- Department of Biology, New York University, New York, NY 10003, USA
| | - C. Desplan
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Zhang X, Sun D, Wong K, Salkini A, Najafi H, Kim WJ. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Fly (Austin) 2024; 18:2368336. [PMID: 38884422 PMCID: PMC11185185 DOI: 10.1080/19336934.2024.2368336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ammar Salkini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hadi Najafi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
11
|
Ewen-Campen B, Joshi N, Hermon AS, Thakkar T, Zirin J, Perrimon N. A collection of split-Gal4 drivers targeting conserved signaling ligands in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617664. [PMID: 39416173 PMCID: PMC11482896 DOI: 10.1101/2024.10.10.617664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Communication between cells in metazoan organisms is mediated by a remarkably small number of highly conserved signaling pathways. Given the relatively small number of signaling pathways, the existence of multiple related ligands for many of these pathways is thought to represent a key evolutionary innovation for encoding complexity into cell-cell signaling. Relatedly, crosstalk and other interactions between pathways is another critical feature which allows a modest number pathways to ultimately generate an enormously diverse range of outcomes. It would thus be useful to have genetic tools to identify and manipulate not only those cells which express a given signaling ligand, but also those cells that specifically co-express pairs of signaling ligands. Here, we present a collection of split-Gal4 knock-in lines targeting many of the ligands for highly conserved signaling pathways in Drosophila (Notch, Hedgehog, FGF, EGF, TGFβ, JAK/STAT, JNK, and PVR). We demonstrate that these lines faithfully recapitulate the endogenous expression pattern of their targets, and that they can be used to specifically identify the cells and tissues that co-express pairs of signaling ligands. As a proof of principle, we demonstrate that the 4th chromosome TGFβ ligands myoglianin and maverick are broadly co-expressed in muscles and other tissues of both larva and adults, and that the JAK/STAT ligands upd2 and upd3 are partially co-expressed from cells of the midgut following gut damage. Together with our previously collection of split-Gal4 lines targeting the seven Wnt ligands, this resource allows Drosophila researchers to identify and genetically manipulate cells that specifically express pairs of conserved ligands from nearly all the major intercellular signaling pathways.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Suraj Hermon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
12
|
Lyu C, Li Z, Xu C, Wong KKL, Luginbuhl DJ, McLaughlin CN, Xie Q, Li T, Li H, Luo L. Dimensionality reduction simplifies synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609939. [PMID: 39253519 PMCID: PMC11383009 DOI: 10.1101/2024.08.27.609939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The distribution of postsynaptic partners in three-dimensional (3D) space presents complex choices for a navigating axon. Here, we discovered a dimensionality reduction principle in establishing the 3D glomerular map in the fly antennal lobe. Olfactory receptor neuron (ORN) axons first contact partner projection neuron (PN) dendrites at the 2D spherical surface of the antennal lobe during development, regardless of whether the adult glomeruli are at the surface or interior of the antennal lobe. Along the antennal lobe surface, axons of each ORN type take a specific 1D arc-shaped trajectory that precisely intersects with their partner PN dendrites. Altering axon trajectories compromises synaptic partner matching. Thus, a 3D search problem is reduced to 1D, which simplifies synaptic partner matching and may generalize to the wiring process of more complex brains.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N. McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
15
|
Diao F, Vasudevan D, Heckscher ES, White BH. Hox gene-specific cellular targeting using split intein Trojan exons. Proc Natl Acad Sci U S A 2024; 121:e2317083121. [PMID: 38602904 PMCID: PMC11047080 DOI: 10.1073/pnas.2317083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
The Trojan exon method, which makes use of intronically inserted T2A-Gal4 cassettes, has been widely used in Drosophila to create thousands of gene-specific Gal4 driver lines. These dual-purpose lines provide genetic access to specific cell types based on their expression of a native gene while simultaneously mutating one allele of the gene to enable loss-of-function analysis in homozygous animals. While this dual use is often an advantage, the truncation mutations produced by Trojan exons are sometimes deleterious in heterozygotes, perhaps by creating translation products with dominant negative effects. Such mutagenic effects can cause developmental lethality as has been observed with genes encoding essential transcription factors. Given the importance of transcription factors in specifying cell type, alternative techniques for generating specific Gal4 lines that target them are required. Here, we introduce a modified Trojan exon method that retains the targeting fidelity and plug-and-play modularity of the original method but mitigates its mutagenic effects by exploiting the self-splicing capabilities of split inteins. "Split Intein Trojan exons" (siTrojans) ensure that the two truncation products generated from the interrupted allele of the native gene are trans-spliced to create a full-length native protein. We demonstrate the efficacy of siTrojans by generating a comprehensive toolkit of Gal4 and Split Gal4 lines for the segmentally expressed Hox transcription factors and illustrate their use in neural circuit mapping by targeting neurons according to their position along the anterior-posterior axis. Both the method and the Hox gene-specific toolkit introduced here should be broadly useful.
Collapse
Affiliation(s)
- Fengqiu Diao
- Laboratory of Molecular Biology, Section on Neural Function, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Deeptha Vasudevan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL60637
| | - Ellie S. Heckscher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL60637
| | - Benjamin H. White
- Laboratory of Molecular Biology, Section on Neural Function, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
16
|
Zirin J, Jusiak B, Lopes R, Ewen-Campen B, Bosch JA, Risbeck A, Forman C, Villalta C, Hu Y, Perrimon N. Expanding the Drosophila toolkit for dual control of gene expression. eLife 2024; 12:RP94073. [PMID: 38569007 PMCID: PMC10990484 DOI: 10.7554/elife.94073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Barbara Jusiak
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Raphael Lopes
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Justin A Bosch
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Corey Forman
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Yanhui Hu
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
17
|
Merrill CB, Titos I, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A. Iterative assay for transposase-accessible chromatin by sequencing to isolate functionally relevant neuronal subtypes. SCIENCE ADVANCES 2024; 10:eadi4393. [PMID: 38536919 PMCID: PMC10971406 DOI: 10.1126/sciadv.adi4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/21/2024] [Indexed: 04/18/2024]
Abstract
The Drosophila brain contains tens of thousands of distinct cell types. Thousands of different transgenic lines reproducibly target specific neuron subsets, yet most still express in several cell types. Furthermore, most lines were developed without a priori knowledge of where the transgenes would be expressed. To aid in the development of cell type-specific tools for neuronal identification and manipulation, we developed an iterative assay for transposase-accessible chromatin (ATAC) approach. Open chromatin regions (OCRs) enriched in neurons, compared to whole bodies, drove transgene expression preferentially in subsets of neurons. A second round of ATAC-seq from these specific neuron subsets revealed additional enriched OCR2s that further restricted transgene expression within the chosen neuron subset. This approach allows for continued refinement of transgene expression, and we used it to identify neurons relevant for sleep behavior. Furthermore, this approach is widely applicable to other cell types and to other organisms.
Collapse
Affiliation(s)
- Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Aylin R. Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Li SA, Li HG, Shoji N, Desplan C, Chen YCD. Protocol for replacing coding intronic MiMIC and CRIMIC lines with T2A-split-GAL4 lines in Drosophila using genetic crosses. STAR Protoc 2023; 4:102706. [PMID: 38060386 PMCID: PMC10751567 DOI: 10.1016/j.xpro.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/30/2023] Open
Abstract
Here, we present a protocol for generating gene-specific split-GAL4 drivers from coding intronic Minos-mediated integration cassette/CRISPR-mediated integration cassette (MiMIC/CRIMIC) lines in Drosophila. We describe steps for four rounds of in vivo genetic crosses, PCR genotyping, and fluorescence imaging to ensure correct orientation of split-GAL4 integration before establishing stable fly stocks. This protocol offers a cost-effective alternative to traditional microinjection techniques for converting coding intronic MiMIC/CRIMIC lines into gene-specific split-GAL4 lines that are adaptable for fly researchers working on different tissues. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Siqi April Li
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Nathalie Shoji
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, Abu Dhabi 51133, United Arab Emirates
| | | |
Collapse
|
19
|
Lyu C, Li Z, Luo L. Toward building a library of cell type-specific drivers across developmental stages. Proc Natl Acad Sci U S A 2023; 120:e2312196120. [PMID: 37590431 PMCID: PMC10466085 DOI: 10.1073/pnas.2312196120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Cheng Lyu
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| | - Zhuoran Li
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| | - Liqun Luo
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
20
|
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, Berger B, White BH, Perrimon N. split-intein Gal4 provides intersectional genetic labeling that is repressible by Gal80. Proc Natl Acad Sci U S A 2023; 120:e2304730120. [PMID: 37276389 PMCID: PMC10268248 DOI: 10.1073/pnas.2304730120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
The split-Gal4 system allows for intersectional genetic labeling of highly specific cell types and tissues in Drosophila. However, the existing split-Gal4 system, unlike the standard Gal4 system, cannot be repressed by Gal80, and therefore cannot be controlled temporally. This lack of temporal control precludes split-Gal4 experiments in which a genetic manipulation must be restricted to specific timepoints. Here, we describe a split-Gal4 system based on a self-excising split-intein, which drives transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is repressible by Gal80. We demonstrate the potent inducibility of "split-intein Gal4" in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch system, providing an independent method for intersectional labeling with inducible control. We also show that the split-intein Gal4 system can be used to generate highly cell type-specific genetic drivers based on in silico predictions generated by single-cell RNAseq (scRNAseq) datasets, and we describe an algorithm ("Two Against Background" or TAB) to predict cluster-specific gene pairs across multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create split-intein Gal4 drivers based on either CRISPR knock-ins to target genes or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Rohit Singh
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02143
| | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Boston, MA02115
| |
Collapse
|