1
|
Obaseki I, Ndolo CC, Adedeji AA, Popoola HO, Kravats AN. The structural and functional dynamics of BiP and Grp94: opportunities for therapeutic discovery. Trends Pharmacol Sci 2025:S0165-6147(25)00044-6. [PMID: 40253284 DOI: 10.1016/j.tips.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 04/21/2025]
Abstract
Binding immunoglobulin protein (BiP) and glucose-regulated protein 94 (Grp94) are endoplasmic reticulum (ER)-localized molecular chaperones that ensure proper protein folding and maintain protein homeostasis. However, overexpression of these chaperones during ER stress can contribute to disease progression in numerous pathologies. Although these chaperones represent promising therapeutic targets, their inhibition has been challenged by gaps in understanding of targetable chaperone features and their complex biology. To overcome these challenges, a new assay has been developed to selectively target BiP, and compounds that exploit subtle conformational changes of Grp94 have been designed. This review summarizes recent advances in elucidating structural and functional dynamics of BiP and Grp94. We explore leveraging this information to develop novel therapeutic interventions. Finally, given the recent advances in computing, we discuss how machine learning methods can be used to accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Ikponwmosa Obaseki
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Chioma C Ndolo
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ayodeji A Adedeji
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Hannah O Popoola
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Andrea N Kravats
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
2
|
Azam TP, Han L, Deans EE, Huang B, Hoxie R, Friedman LJ, Gelles J, Street TO. Mechanism of client loading from BiP to Grp94 and its disruption by select inhibitors. Nat Commun 2025; 16:3575. [PMID: 40234402 PMCID: PMC12000397 DOI: 10.1038/s41467-025-58658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Hsp90 chaperones are a long-standing cancer drug target with numerous ATP-competitive inhibitors in clinical trials. Client proteins are transferred from Hsp70 to Hsp90 in a stepwise process of client delivery, loading, and trapping, but little is known about how inhibitors influence these steps. By examining the ER-resident BiP/Grp94 system (Hsp70/Hsp90 paralogs), we discover that some inhibitors allow BiP to push Grp94 into the client loading conformation, whereas other inhibitors block this conformational change and destabilize a BiP/client/Grp94 ternary complex. We uncover how BiP drives Grp94 into the client loading state and identify a structural explanation for why only a select group of inhibitors disrupt client loading on Grp94. These results show a client loading mechanism with specific shared features between the Hsp70/Hsp90 systems in the ER and cytosol and open a new avenue for rational Hsp90 drug design.
Collapse
Affiliation(s)
- Tara P Azam
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Luna Han
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Erin E Deans
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Bin Huang
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Reyal Hoxie
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Larry J Friedman
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Jeff Gelles
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA
| | - Timothy O Street
- Department of Biochemistry at Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
3
|
Pasala C, Digwal CS, Sharma S, Wang S, Bubula A, Chiosis G. Epichaperomes: redefining chaperone biology and therapeutic strategies in complex diseases. RSC Chem Biol 2025:d5cb00010f. [PMID: 40144950 PMCID: PMC11933791 DOI: 10.1039/d5cb00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The complexity of disease biology extends beyond mutations or overexpression, encompassing stress-induced mechanisms that reshape proteins into pathological assemblies. Epichaperomes, stable and disease-specific assemblies of chaperones and co-chaperones, exemplify this phenomenon. This review emphasizes the critical structural and functional distinctions between epichaperomes and canonical chaperones, highlighting their role in redefining therapeutic strategies. Epichaperomes arise under stress conditions through post-translational modifications that stabilize these assemblies, enabling them to act as scaffolding platforms that rewire protein-protein interaction networks and drive the pathological phenotypes of complex diseases such as cancer and neurodegeneration. Chemical biology has been instrumental in uncovering the unique nature of epichaperomes, with small molecules like PU-H71 elucidating their biology and demonstrating their therapeutic potential by dismantling pathological scaffolds and restoring normal protein-protein interaction networks. By targeting epichaperomes, we unlock the potential for network-level interventions and personalized medicine, offering transformative possibilities for diseases driven by protein-protein interaction network dysregulation.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Shujuan Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Alessia Bubula
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| |
Collapse
|
4
|
Karras GI, Colombo G, Kravats AN. Hsp90: Bringing it all together. Cell Stress Chaperones 2025; 30:69-79. [PMID: 39889818 PMCID: PMC12013134 DOI: 10.1016/j.cstres.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Heat-shock protein 90 (Hsp90) is an ancient and multifaceted protein-folding machine essential for most organisms. The past 40 years have uncovered remarkable complexity in the regulation and function of Hsp90, which dwarfs most other machines in the cell in sophistication. Here, we propose four analogies to illustrate Hsp90's sophistication: a multifunctional Swiss Army knife, an automobile engine and its controls, a switchboard acting as a hub and directing signals, and an orchestra conductor setting the tempo of a symphony. Although each of these analogies represents some key Hsp90 activities, none of them captures the entirety of Hsp90's complexity. Together, these roles enable Hsp90 to support both homeostasis and differentiation, both cellular stability and adaptability. At the 11th International Conference on the Hsp90 Chaperone Machine, the consensus was that to understand this major guardian of proteostasis, we need to study how the many facets of Hsp90's function influence each other. We hope that these analogies will help to conceptually integrate the many roles of Hsp90 in proteostasis and help the field develop the practical applications of Hsp90 modulators.
Collapse
Affiliation(s)
- Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston 77030, TX, USA.
| | | | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford 45056, OH, USA.
| |
Collapse
|
5
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
6
|
Magni A, Sciva C, Castelli M, Digwal CS, Rodina A, Sharma S, Ochiana S, Patel HJ, Shah S, Chiosis G, Moroni E, Colombo G. N-Glycosylation-Induced Pathologic Protein Conformations as a Tool to Guide the Selection of Biologically Active Small Molecules. Chemistry 2024; 30:e202401957. [PMID: 39042517 PMCID: PMC12000882 DOI: 10.1002/chem.202401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Post-translational modifications such as protein N-glycosylation, significantly influence cellular processes. Dysregulated N-glycosylation, exemplified in Grp94, a member of the Hsp90 family, leads to structural changes and the formation of epichaperomes, contributing to pathologies. Targeting N-glycosylation-induced conformations offers opportunities for developing selective chemical tools and drugs for these pathologic forms of chaperones. We here demonstrate how a specific Grp94 conformation induced by N-glycosylation, identified previously via molecular dynamics simulations, rationalizes the distinct behavior of similar ligands. Integrating dynamic ligand unbinding information with SAR development, we differentiate ligands productively engaging the pathologic Grp94 conformers from those that are not. Additionally, analyzing binding site stereoelectronic properties and QSAR models using cytotoxicity data unveils relationships between chemical, conformational properties, and biological activities. These findings facilitate the design of ligands targeting specific Grp94 conformations induced by abnormal glycosylation, selectively disrupting pathogenic protein networks while sparing normal mechanisms.
Collapse
Affiliation(s)
- Andrea Magni
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Cristiano Sciva
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
- Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131, Milano, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stefan Ochiana
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hardik J Patel
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Smit Shah
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131, Milano, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
7
|
Mirikar D, Bushman Y, Truman AW. Structural transitions modulate the chaperone activities of Grp94. Trends Biochem Sci 2024; 49:752-753. [PMID: 38906726 PMCID: PMC11380588 DOI: 10.1016/j.tibs.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
A recent study by Amankwah et al. reports how co-chaperone proteins and ATP hydrolysis fine-tune the function of endoplasmic reticulum (ER)-resident Hsp90 paralog Grp94.
Collapse
Affiliation(s)
- Duhita Mirikar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yevheniia Bushman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
8
|
Camara A, Chugh H, George A, Dolidze L, Ryu K, Holly KJ, Flaherty DP, Mattoo S. Discovery and validation of a novel inhibitor of HYPE-mediated AMPylation. Cell Stress Chaperones 2024; 29:404-424. [PMID: 38599565 PMCID: PMC11053294 DOI: 10.1016/j.cstres.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Adenosyl monophosphate (AMP)ylation (the covalent transfer of an AMP from Adenosine Triphosphate (ATP) onto a target protein) is catalyzed by the human enzyme Huntingtin Yeast Interacting Partner E (HYPE)/FicD to regulate its substrate, the heat shock chaperone binding immunoglobulin protein (BiP). HYPE-mediated AMPylation of BiP is critical for maintaining proteostasis in the endoplasmic reticulum and mounting a unfolded protein response in times of proteostatic imbalance. Thus, manipulating HYPE's enzymatic activity is a key therapeutic strategy toward the treatment of various protein misfolding diseases, including neuropathy and early-onset diabetes associated with two recently identified clinical mutations of HYPE. Herein, we present an optimized, fluorescence polarization-based, high-throughput screening (HTS) assay to discover activators and inhibitors of HYPE-mediated AMPylation. After challenging our HTS assay with over 30,000 compounds, we discovered a novel AMPylase inhibitor, I2.10. We also determined a low micromolar IC50 for I2.10 and employed biorthogonal counter-screens to validate its efficacy against HYPE's AMPylation of BiP. Further, we report low cytotoxicity of I2.10 on human cell lines. We thus established an optimized, high-quality HTS assay amenable to tracking HYPE's enzymatic activity at scale, and provided the first novel small-molecule inhibitor capable of perturbing HYPE-directed AMPylation of BiP in vitro. Our HTS assay and I2.10 compound serve as a platform for further development of HYPE-specific small-molecule therapeutics.
Collapse
Affiliation(s)
- Ali Camara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Heerak Chugh
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Alyssa George
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lukas Dolidze
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kevin Ryu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Katrina J Holly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|