1
|
Gnanagobal H, Cao T, Hossain A, Vasquez I, Chakraborty S, Chukwu-Osazuwa J, Boyce D, Espinoza MJ, García-Angulo VA, Santander J. Role of riboflavin biosynthesis gene duplication and transporter in Aeromonas salmonicida virulence in marine teleost fish. Virulence 2023; 14:2187025. [PMID: 36895132 PMCID: PMC10012899 DOI: 10.1080/21505594.2023.2187025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Canada
| | - María Jesus Espinoza
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
2
|
Kenjić N, Meneely KM, Wherritt DJ, Denler MC, Jackson TA, Moran GR, Lamb AL. Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis. J Am Chem Soc 2022; 144:12769-12780. [PMID: 35802469 PMCID: PMC9305975 DOI: 10.1021/jacs.2c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
RibB (3,4-dihydroxy-2-butanone 4-phosphate synthase)
is a magnesium-dependent
enzyme that excises the C4 of d-ribulose-5-phosphate (d-Ru5P) as formate. RibB generates the four-carbon substrate
for lumazine synthase that is incorporated into the xylene moiety
of lumazine and ultimately the riboflavin isoalloxazine. The reaction
was first identified by Bacher and co-workers in the 1990s, and their
chemical mechanism hypothesis became canonical despite minimal direct
evidence. X-ray crystal structures of RibB typically show two metal
ions when solved in the presence of non-native metals and/or liganding
non-substrate analogues, and the consensus hypothetical mechanism
has incorporated this cofactor set. We have used a variety of biochemical
approaches to further characterize the chemistry catalyzed by RibB
from Vibrio cholera (VcRibB). We show
that full activity is achieved at metal ion concentrations equal to
the enzyme concentration. This was confirmed by electron paramagnetic
resonance of the enzyme reconstituted with manganese and crystal structures
liganded with Mn2+ and a variety of sugar phosphates. Two
transient species prior to the formation of products were identified
using acid quench of single turnover reactions in combination with
NMR for singly and fully 13C-labeled d-Ru5P. These
data indicate that dehydration of C1 forms the first transient species,
which undergoes rearrangement by a 1,2 migration, fusing C5 to C3
and generating a hydrated C4 that is poised for elimination as formate.
Structures determined from time-dependent Mn2+ soaks of
VcRibB-d-Ru5P crystals show accumulation in crystallo of
the same intermediates. Collectively, these data reveal for the first
time crucial transient chemical states in the mechanism of RibB.
Collapse
Affiliation(s)
- Nikola Kenjić
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kathleen M Meneely
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel J Wherritt
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Melissa C Denler
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, University of Loyola, Chicago, Illinois 60660, United States
| | - Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Nouwen N, Arrighi JF, Gully D, Giraud E. RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:88-99. [PMID: 33226302 DOI: 10.1094/mpmi-07-20-0209-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Jean-Francois Arrighi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Molecular dynamics studies unravel role of conserved residues responsible for movement of ions into active site of DHBPS. Sci Rep 2017; 7:40452. [PMID: 28079168 PMCID: PMC5228156 DOI: 10.1038/srep40452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/07/2016] [Indexed: 11/08/2022] Open
Abstract
3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) catalyzes the conversion of D-ribulose 5-phosphate (Ru5P) to L-3,4-dihydroxy-2-butanone-4-phosphate in the presence of Mg2+. Although crystal structures of DHBPS in complex with Ru5P and non-catalytic metal ions have been reported, structure with Ru5P along with Mg2+ is still elusive. Therefore, mechanistic role played by Mg2+ in the structure of DHBPS is poorly understood. In this study, molecular dynamics simulations of DHBPS-Ru5P complex along with Mg2+ have shown entry of Mg2+ from bulk solvent into active site. Presence of Mg2+ in active site has constrained conformations of Ru5P and has reduced flexibility of loop-2. Formation of hydrogen bonds among Thr-108 and residues - Gly-109, Val-110, Ser-111, and Asp-114 are found to be critical for entry of Mg2+ into active site. Subsequent in silico mutations of residues, Thr-108 and Asp-114 have substantiated the importance of these interactions. Loop-4 of one monomer is being proposed to act as a “lid” covering the active site of other monomer. Further, the conserved nature of residues taking part in the transfer of Mg2+ suggests the same mechanism being present in DHBPS of other microorganisms. Thus, this study provides insights into the functioning of DHBPS that can be used for the designing of inhibitors.
Collapse
|
5
|
Islam Z, Kumar A, Singh S, Salmon L, Karthikeyan S. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae. J Biol Chem 2015; 290:11293-308. [PMID: 25792735 DOI: 10.1074/jbc.m114.611830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/06/2022] Open
Abstract
The riboflavin biosynthesis pathway has been shown to be essential in many pathogens and is absent in humans. Therefore, enzymes involved in riboflavin synthesis are considered as potential antibacterial drug targets. The enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) catalyzes one of the two committed steps in the riboflavin pathway and converts d-ribulose 5-phosphate (Ru5P) to l-3,4-dihydroxy-2-butanone 4-phosphate and formate. Moreover, DHBPS is shown to be indispensable for Mycobacterium, Salmonella, and Helicobacter species. Despite the essentiality of this enzyme in bacteria, no inhibitor has been identified hitherto. Here, we describe kinetic and crystal structure characterization of DHBPS from Vibrio cholerae (vDHBPS) with a competitive inhibitor 4-phospho-d-erythronohydroxamic acid (4PEH) at 1.86-Å resolution. In addition, we also report the structural characterization of vDHBPS in its apo form and in complex with its substrate and substrate plus metal ions at 1.96-, 1.59-, and 2.04-Å resolution, respectively. Comparison of these crystal structures suggests that 4PEH inhibits the catalytic activity of DHBPS as it is unable to form a proposed intermediate that is crucial for DHBPS activity. Furthermore, vDHBPS structures complexed with substrate and metal ions reveal that, unlike Candida albicans, binding of substrate to vDHBPS induces a conformational change from an open to closed conformation. Interestingly, the position of second metal ion, which is different from that of Methanococcus jannaschii, strongly supports an active role in the catalytic mechanism. Thus, the kinetic and structural characterization of vDHBPS reveals the molecular mechanism of inhibition shown by 4PEH and that it can be explored further for designing novel antibiotics.
Collapse
Affiliation(s)
- Zeyaul Islam
- From the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India and
| | - Adarsh Kumar
- From the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India and
| | - Suruchi Singh
- From the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India and
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, CNRS UMR8182, F-91405 Orsay, France
| | - Subramanian Karthikeyan
- From the CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160 036, India and
| |
Collapse
|
6
|
Haase I, Gräwert T, Illarionov B, Bacher A, Fischer M. Recent advances in riboflavin biosynthesis. Methods Mol Biol 2014; 1146:15-40. [PMID: 24764086 DOI: 10.1007/978-1-4939-0452-5_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboflavin is biosynthesized from GTP and ribulose 5-phosphate. Whereas the early reactions conducing to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate show significant taxonomic variation, the subsequent reaction steps are universal in all taxonomic kingdoms. With the exception of a hitherto elusive phosphatase, all enzymes of the pathway have been characterized in some detail at the structural and mechanistic level. Some of the pathway enzymes (GTP cycloyhdrolase II, 3,4-dihydroxy-2-butanone 4-phosphate synthase, riboflavin synthase) have exceptionally complex reaction mechanisms. The commercial production of the vitamin is now entirely based on highly productive fermentation processes. Due to their absence in animals, the pathway enzymes are potential targets for the development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Ilka Haase
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate. Appl Environ Microbiol 2014; 81:130-8. [PMID: 25326299 DOI: 10.1128/aem.02920-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of a dxs deletion in Escherichia coli grown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-type E. coli yajO gene, annotated as a putative xylose reductase, or via various mutations in the native ribB gene. In vitro analysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway in E. coli for production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.
Collapse
|
8
|
Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria. J Bacteriol 2013; 195:5479-86. [PMID: 24097946 DOI: 10.1128/jb.00651-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.
Collapse
|
9
|
Singh M, Kumar P, Yadav S, Gautam R, Sharma N, Karthikeyan S. The crystal structure reveals the molecular mechanism of bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II (Rv1415) fromMycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1633-44. [DOI: 10.1107/s0907444913011402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
|
10
|
Abstract
Nuclear magnetic resonance (NMR) is well suited to probing the interactions between ligands and macromolecular receptors. It is a truly label-free technique, requiring only the presence of atoms (usually (1)H or (19)F) which give rise to observable resonances on either the ligand or the receptor. A number of parameters associated with these resonances can be used to distinguish rapidly tumbling compounds from ligands which bind to a macromolecular receptor. As such, NMR reports directly on the molecular components involved in the binding interaction whilst avoiding artifacts arising from the addition of an observable label. NMR is also unique amongst biophysical techniques in giving information on the chemical nature of almost all of the constituents present in the sample, thus allowing ready identification of sample, contaminants, degraded material and buffers. Solution phase NMR is also free of artifacts introduced by the presence of a solid support or matrix, although some interesting NMR techniques have been developed to identify ligand-receptor interactions in both solid and heterogeneous phase systems.NMR can readily report on molecular interactions across a wide range of affinities and timescales. Although NMR is not an inherently sensitive technique, the development of cryogenic probeheads over the past decade has dramatically increased the range of applicability of the technique and reduced the stringent sample requirements that used to be regarded as an "Achilles' heel" of NMR. The last, but by no means the least, NMR has the ability to determine structural information at atomic resolution; this has proved to be particularly useful when applied to those protein-ligand systems which cannot be readily crystallized.
Collapse
Affiliation(s)
- Ben Davis
- Vernalis Ltd (R&D), Great Abington, Cambridge, UK
| |
Collapse
|
11
|
Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations. J Chromatogr A 2012; 1229:113-20. [DOI: 10.1016/j.chroma.2011.12.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/15/2011] [Accepted: 12/23/2011] [Indexed: 11/23/2022]
|
12
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
13
|
Structural basis for pH dependent monomer–dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis. J Struct Biol 2011; 174:374-84. [DOI: 10.1016/j.jsb.2011.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 11/22/2022]
|
14
|
Abstract
The biosynthesis of riboflavin requires 1 equivalent of GTP and 2 equivalents of ribulose phosphate. The first committed reactions of the convergent pathway are catalyzed by GTP hydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase. The initial reaction steps afford 5-amino-6-ribitylaminopyrimidine 5'-phosphate, which needs to be dephosphorylated by a hitherto elusive hydrolase. The dephosphorylated pyrimidine is condensed with the carbohydrate precursor, 3,4-dihydroxy-2-butanone 4-phosphate. The resulting 6,7-dimethyl-8-ribityllumazine affords riboflavin by a mechanistically unique dismutation, i.e., by formation of a pentacyclic dimer that is subsequently fragmented.
Collapse
|
15
|
Nudelman I, Akabayov SR, Schnur E, Biron Z, Levy R, Xu Y, Yang D, Anglister J. Intermolecular interactions in a 44 kDa interferon-receptor complex detected by asymmetric reverse-protonation and two-dimensional NOESY. Biochemistry 2010; 49:5117-33. [PMID: 20496919 DOI: 10.1021/bi100041f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type I interferons (IFNs) make up a family of homologous helical cytokines initiating strong antiviral and antiproliferative activity. All type I IFNs bind to a common cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. We studied intermolecular interactions between IFNAR2-EC and IFNalpha2 using asymmetric reverse-protonation of the different complex components and two-dimensional homonuclear NOESY. This new approach revealed with an excellent signal-to-noise ratio 24 new intermolecular NOEs between the two molecules despite the low concentration of the complex (0.25 mM) and its high molecular mass (44 kDa). Sequential and side chain assignment of IFNAR2-EC and IFNalpha2 in their binary complex helped assign the intermolecular NOEs to the corresponding protons. A docking model of the IFNAR2-EC-IFNalpha2 complex was calculated on the basis of the intermolecular interactions found in this study as well as four double mutant cycle constraints, previously observed NOEs between a single pair of residues and the NMR mapping of the binding sites on IFNAR2-EC and IFNalpha2. Our docking model doubles the buried surface area of the previous model and significantly increases the number of intermolecular hydrogen bonds, salt bridges, and van der Waals interactions. Furthermore, our model reveals the participation of several new regions in the binding site such as the N-terminus and A helix of IFNalpha2 and the C domain of IFNAR2-EC. As a result of these additions, the orientation of IFNAR2-EC relative to IFNalpha2 has changed by 30 degrees in comparison with a previously calculated model that was based on NMR mapping of the binding sites and double mutant cycle constraints. In addition, the new model strongly supports the recently proposed allosteric changes in IFNalpha2 upon binding of IFNAR1-EC to the binary IFNalpha2-IFNAR2-EC complex.
Collapse
Affiliation(s)
- Ilona Nudelman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction, and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The enzymes of the riboflavin pathway are potential targets for antibacterial agents.
Collapse
Affiliation(s)
- Markus Fischer
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | | |
Collapse
|
17
|
Interactions between Physics and Biodisciplines within the Framework of Molecular Sciences. Int J Mol Sci 2004. [DOI: 10.3390/i5040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Hoffmann M, Nemetz C, Madin K, Buchberger B. Rapid translation system: a novel cell-free way from gene to protein. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:1-30. [PMID: 15504701 DOI: 10.1016/s1387-2656(04)10001-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteome research has recently been stimulated by important technological advances in the field of recombinant protein expression. One major breakthrough was the development of a new generation of cell-free transcription/translation systems. The open and flexible character of these systems allows direct control over expression conditions via the addition of supplements to the expression reaction. The possibility of working with linear expression templates instead of cloned plasmids and the ease of downstream processing, circumventing the need for cell-lysis, makes them ideally suited for high-throughput screening applications. Among these novel cell-free systems, the Rapid Translation System (RTS) developed by Roche is the first one that is scalable from micrograms to milligrams of protein. This review describes the basic principles of RTS which differentiate it from traditional in vitro expression technologies, starting from template generation to high-end applications like labeling for structural biology research. Recent results obtained by RTS users from different institutions are presented to illustrate each step of a novel cell-free protein expression workflow and its benefits compared to traditional cell-based expression.
Collapse
|
19
|
Naider F, Estephan R, Englander J, Suresh Babu VV, Arevalo E, Samples K, Becker JM. Sexual conjugation in yeast: A paradigm to study G-protein-coupled receptor domain structure. Biopolymers 2004; 76:119-28. [PMID: 15054892 DOI: 10.1002/bip.10567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The yeast Saccharomyces cerevisiae undergoes cell fusion during sexual conjugation to form diploid cells. The haploids participating in this process signal each other through secreted peptide-mating factors (alpha-factor and a-factor) that are recognized by G-protein-coupled receptors. The receptor (Ste2p) recognizing the tridecapeptide alpha-factor is used as a model system in our laboratory to understand various aspects of peptide-receptor interactions and receptor structure. Using chemical procedures we have synthesized peptides corresponding to the seven transmembrane domains of Ste2p and studied their structures in membrane mimetic environments. Extension of these studies requires preparation of longer fragments of Ste2p. This article discusses strategies used in our laboratory to prepare peptides containing multiple domains of Ste2p. Data are presented on the use of chemical synthesis, biosynthesis, and native chemical ligation. Using biosynthetic approaches fusion proteins have been expressed that contain single receptor domains, two transmembrane domains connected by the contiguous loop, and the tail connected to the seventh transmembrane domain. Tens of milligrams of fusion protein were obtained per liter, and multimilligram quantities of the isotopically labeled target peptides were isolated using such biosynthetic approaches. Initial circular dichroism results on a chemically synthesized 64-residue peptide containing a portion of the cytosolic tail and the complete seventh transmembrane domain showed that the tail portion and the hydrophobic core of this peptide maintained individual conformational preferences. Moreover, this peptide could be studied at near millimolar concentrations in the presence of micelles and did not aggregate under these conditions. Thus, these constructs can be investigated using high-resolution nuclear magnetic resonance techniques, and the cytosolic tail of Ste2p can be used as a hydrophilic template to improve solubility of transmembrane peptides for structural analysis.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, The College of Staten Island of The City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Steinbacher S, Schiffmann S, Richter G, Huber R, Bacher A, Fischer M. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism. J Biol Chem 2003; 278:42256-65. [PMID: 12904291 DOI: 10.1074/jbc.m307301200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal center presumably consisting of non-catalytic zinc and calcium ions at 1.7-A resolution. The carbonyl group (O2) and two out of three free hydroxyl groups (OH3 and OH4) of the substrate are metal-coordinated. We correlate previous mutational studies on this enzyme with the present structural results. Residues of the first coordination sphere involved in metal binding are indispensable for catalytic activity. Only Glu-185 of the second coordination sphere cannot be replaced without complete loss of activity. It contacts the C3 hydrogen atom directly and probably initiates enediol formation in concert with both metal ions to start the reaction sequence. Mechanistic similarities to Rubisco acting on the similar substrate ribulose 1,5-diphosphate in carbon dioxide fixation as well as other carbohydrate (reducto-) isomerases are discussed.
Collapse
Affiliation(s)
- Stefan Steinbacher
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R. The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. J Mol Biol 2003; 326:1427-35. [PMID: 12595255 DOI: 10.1016/s0022-2836(03)00039-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pex13p is an essential component of the peroxisomal protein import machinery and interacts via its C-terminal SH3 domain with the type II SH3-ligand Pex14p and the non-PXXP protein Pex5p. We report the solution structure of the SH3 domain of Pex13p from Saccharomyces cerevisiae and the identification of a novel-binding pocket, which binds a non-PXXP-peptide representing the binding site of Pex5p. Chemical shift assays revealed the binding sites for Pex5p and Pex14p ligand peptides to be distinct and spatially separated. Competition assays demonstrated that the two ligand peptides can bind simultaneously to the SH3 domain.
Collapse
Affiliation(s)
- José R Pires
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Fischer M, Romisch W, Schiffmann S, Kelly M, Oschkinat H, Steinbacher S, Huber R, Eisenreich W, Richter G, Bacher A. Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii. J Biol Chem 2002; 277:41410-6. [PMID: 12200440 DOI: 10.1074/jbc.m206863200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothetical protein predicted by the open reading frame MJ0055 of Methanococcus jannaschii was expressed in a recombinant Escherichia coli strain under the control of a synthetic gene optimized for translation in an eubacterial host. The recombinant protein catalyzes the formation of the riboflavin precursor 3,4-dihydroxy-2-butanone 4-phosphate from ribulose 5-phosphate at a rate of 174 nmol mg(-1) min(-1) at 37 degrees C. The homodimeric 51.6-kDa protein requires divalent metal ions, preferentially magnesium, for activity. The reaction involves an intramolecular skeletal rearrangement as shown by (13)C NMR spectroscopy using [U-(13)C(5)]ribulose 5-phosphate as substrate. A cluster of charged amino acid residues comprising arginine 25, glutamates 26 and 28, and aspartates 21 and 30 is essential for catalytic activity. Histidine 164 and glutamate 185 were also shown to be essential for catalytic activity.
Collapse
Affiliation(s)
- Markus Fischer
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herz S, Kis K, Bacher A, Rohdich F. A tomato enzyme catalyzing the phosphorylation of 3,4-dihydroxy-2-butanone. PHYTOCHEMISTRY 2002; 60:3-11. [PMID: 11985845 DOI: 10.1016/s0031-9422(02)00056-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A riboflavin biosynthesis ribB mutant of Escherichia coli deficient of 3,4-dihydroxy-2-butanone 4-phosphate synthase was complemented with a cDNA library from Lycopersicon esculentum. The complementing gene was isolated and expressed in E. coli. The resulting protein was shown to specify a 62 kDa protein which phosphorylates dihydroxyacetone, both enantiomers of 3,4-dihydroxy-2-butanone, and several other aldoses and ketoses. Sequence analysis revealed homology to dihydroacetone kinases (dak) genes from plants, animals, fungi and some eubacteria. Genes with similarity to the 5' part of the dak gene from tomato were found in many other eubacteria. The physiological role of the dak gene is still incompletely known.
Collapse
Affiliation(s)
- Stefan Herz
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | | | | | | |
Collapse
|