1
|
Ferrero G, Cardamone MD, Luca F, Bourk E, Ricci L, Liu W, Gao Y, Burrone G, Muhammad A, Chan S, Smith E, Fan TYC, Cutrupi S, Garcia-Bassets I, De Bortoli M, Rosenfeld MG, Perissi V. Nonproteolytic ubiquitination regulates chromatin occupancy by the NCoR/SMRT/HDAC3 corepressor complex in MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2502805122. [PMID: 40305047 PMCID: PMC12067245 DOI: 10.1073/pnas.2502805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of gene expression is achieved through the coordinated action of transcription factors and cofactors that often can act as both repressors and activators in response to regulatory signals, with their activity modulated by context-specific signal transduction pathways that also impinge on their transient and cyclical recruitment to chromatin. However, the mechanisms underlying the intricate interplay between the regulatory strategies controlling cofactors' activity and localization across subcellar domains remain poorly understood. Here, we investigated the role of G-Protein Pathway Suppressor 2 (GPS2), a transcriptional cofactor critical for maintaining cellular homeostasis via regulation of mitochondrial biogenesis, stress response, lipid metabolism, insulin signaling, and inflammation, in MCF-7 breast cancer cells. By integration of biochemical assays with genome-wide RNA sequencing and Chromatin immunoprecipitation-Seq analyses, we show that nuclear GPS2 is required for licensing histone deacetylase 3 recruitment to chromatin via restricted ubiquitination by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase previously shown to regulate the switch from repressive to activating functions of the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex and here unexpectedly found to translocate to the nucleus in response to IL-1β stimulation. Nuclear TRAF6 is recruited to chromatin via direct interaction with the corepressors NCoR/SMRT, and TRAF6-mediated ubiquitination of TGF-beta activated kinase 1 (MAP3K7) binding protein 2 (TAB2), a facultative component of the NCoR/SMRT complex, contributes to corepressor clearance from target regulatory regions. Together, these results reveal an exquisite mechanism for coordinating the local regulation of cofactor activity with proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Francesca Luca
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Eliot Bourk
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Laura Ricci
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Wen Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Giulia Burrone
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- Department of Computer Science, University of Torino, Torino10149, Italy
| | - Akhirah Muhammad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Stefanie Chan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Emma Smith
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Ting-Yu Claire Fan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| | - Santina Cutrupi
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Michele De Bortoli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino)10043, Italy
| | - Michael G. Rosenfeld
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA92037
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
| |
Collapse
|
2
|
Franklin R, Zhang B, Frazier J, Chen M, Do BT, Padayao S, Wu K, Vander Heiden MG, Vakoc CR, Roe JS, Ninova M, Murn J, Sykes DB, Cheloufi S. Histone chaperones coupled to DNA replication and transcription control divergent chromatin elements to maintain cell fate. Genes Dev 2025; 39:652-675. [PMID: 40240143 PMCID: PMC12047658 DOI: 10.1101/gad.352316.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
The manipulation of DNA replication and transcription can be harnessed to control cell fate. Central to the regulation of these DNA-templated processes are histone chaperones, which in turn are emerging as cell fate regulators. Histone chaperones are a group of proteins with diverse functions that are primarily involved in escorting histones to assemble nucleosomes and maintain the chromatin landscape. Whether distinct histone chaperone pathways control cell fate and whether they function using related mechanisms remain unclear. To address this, we performed a screen to assess the requirement of diverse histone chaperones in the self-renewal of hematopoietic stem and progenitor cells. Remarkably, all candidates were required to maintain cell fate to differing extents, with no clear correlation with their specific histone partners or DNA-templated process. Among all the histone chaperones, the loss of the transcription-coupled histone chaperone SPT6 most strongly promoted differentiation, even more than the major replication-coupled chromatin assembly factor complex CAF-1. To directly compare how DNA replication- and transcription-coupled histone chaperones maintain stem cell self-renewal, we generated an isogenic dual-inducible system to perturb each pathway individually. We found that SPT6 and CAF-1 perturbations required cell division to induce differentiation but had distinct effects on cell cycle progression, chromatin accessibility, and lineage choice. CAF-1 depletion led to S-phase accumulation, increased heterochromatic accessibility (particularly at H3K27me3 sites), and aberrant multilineage gene expression. In contrast, SPT6 loss triggered cell cycle arrest, altered accessibility at promoter elements, and drove lineage-specific differentiation, which is in part influenced by AP-1 transcription factors. Thus, CAF-1 and SPT6 histone chaperones maintain cell fate through distinct mechanisms, highlighting how different chromatin assembly pathways can be leveraged to alter cell fate.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Brian Zhang
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Jonah Frazier
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Meijuan Chen
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sally Padayao
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Kun Wu
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusets 02142, USA
| | | | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Maria Ninova
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Jernej Murn
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA;
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
3
|
Elmansi AM, Kassem A, Castilla RM, Miller RA. Downregulation of the NF-κB protein p65 is a shared phenotype among most anti-aging interventions. GeroScience 2024:10.1007/s11357-024-01466-9. [PMID: 39666139 DOI: 10.1007/s11357-024-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions. We found that the NF-κB protein p65 is significantly downregulated in the liver of several kinds of slow-aging mice. These included both sexes of GHRKO and Snell Dwarf mutant mice, and in females only of PAPPA KO mice. P65 is also lower in both sexes of mice treated with rapamycin, canagliflozin, meclizine, or acarbose, and in mice undergoing caloric restriction. Two drugs that extend lifespan of male mice, i.e. 17α-estradiol and astaxanthin, however, did not produce lower levels of p65. We also measured other canonical NF-κB signaling regulators, including the activators IKKα and IKKβ and the inhibitor IκB-α. We found that those regulators do not consistently change in a direction that would lead to of NF-κB inhibition. In contrast, we found that NCoR1, an HDAC3 cofactor and a transcription co-repressor that regulates p65 activity, was also downregulated in many of these mouse models. Finally, we report downregulation of three p65 target proteins that regulate the metabolic and inflammatory states of the liver (HNF4α, IL-1β, and CRP) in multiple slow-aging mouse models. Together, these data suggest that NF-κB signaling, might be inhibited in liver of multiple varieties of slow aging mice. This establishes p65 as a potential target for novel longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Abraham Kassem
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rafael M Castilla
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Yang Y, Zhang X, Cai D, Zheng X, Zhao X, Zou JX, Zhang J, Borowsky AD, Dall’Era MA, Corey E, Mitsiades N, Kung HJ, Chen X, Li JJ, Downes M, Evans RM, Chen HW. Functional inversion of circadian regulator REV-ERBα leads to tumorigenic gene reprogramming. Proc Natl Acad Sci U S A 2024; 121:e2411321121. [PMID: 39383000 PMCID: PMC11494309 DOI: 10.1073/pnas.2411321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024] Open
Abstract
Profound functional switch of key regulatory factors may play a major role in homeostasis and disease. Dysregulation of circadian rhythm (CR) is strongly implicated in cancer with mechanisms poorly understood. We report here that the function of REV-ERBα, a major CR regulator of the orphan nuclear receptor subfamily, is dramatically altered in tumors in both its genome binding and functional mode. Loss of CR is linked to a functional inversion of REV-ERBα from a repressor in control of CR and metabolic gene programs in normal tissues to a strong activator in different cancers. Through changing its association from NCoR/HDAC3 corepressor complex to BRD4/p300 coactivators, REV-ERBα directly activates thousands of genes including tumorigenic programs such as MAPK and PI3K-Akt signaling. Functioning as a master transcriptional activator, REV-ERBα partners with pioneer factor FOXA1 and directly stimulates a large number of signaling genes, including multiple growth factors, receptor tyrosine kinases, RASs, AKTs, and MAPKs. Moreover, elevated REV-ERBα reprograms FOXA1 to bind new targets through a BRD4-mediated increase in local chromatin accessibility. Pharmacological targeting with SR8278 diminishes the function of both REV-ERBα and FOXA1 and synergizes with BRD4 inhibitor in effective suppression of tumorigenic programs and tumor growth. Thus, our study revealed a functional inversion by a CR regulator in driving gene reprogramming as an unexpected paradigm of tumorigenesis mechanism and demonstrated a high effectiveness of therapeutic targeting such switch.
Collapse
Affiliation(s)
- Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xingling Zheng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xuan Zhao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - June X. Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Jin Zhang
- Department of Surgical & Radiological Sciences, University of California-Davis, Davis, CA95616
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Marc A. Dall’Era
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Nicholas Mitsiades
- Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, CA95817
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA95817
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xinbin Chen
- Department of Surgical & Radiological Sciences, University of California-Davis, Davis, CA95616
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA95817
- Veterans Affairs Northern California Health Care System-Mather, Mather, CA95655
| |
Collapse
|
5
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|