1
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Chaturvedi R, Long EC. On the chemistry of sunlight-induced DNA lesions: A perspective on the alkaline chemical-induced reactivities of photo-damaged pyrimidine intra-strand dimers. Photochem Photobiol 2024; 100:1698-1712. [PMID: 39403972 DOI: 10.1111/php.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl "hot spot," the focal point of initial hydrolytic attack.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- Department of Chemistry & Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Eric C Long
- Department of Chemistry & Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Maestre-Reyna M, Wang PH, Nango E, Hosokawa Y, Saft M, Furrer A, Yang CH, Gusti Ngurah Putu EP, Wu WJ, Emmerich HJ, Caramello N, Franz-Badur S, Yang C, Engilberge S, Wranik M, Glover HL, Weinert T, Wu HY, Lee CC, Huang WC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Yang KC, Lin WT, Chang YC, Gashi D, Beale E, Ozerov D, Nass K, Knopp G, Johnson PJM, Cirelli C, Milne C, Bacellar C, Sugahara M, Owada S, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Zarzycka W, Müller P, Alahmad MA, Bezold F, Fuchs V, Gnau P, Kiontke S, Korf L, Reithofer V, Rosner CJ, Seiler EM, Watad M, Werel L, Spadaccini R, Yamamoto J, Iwata S, Zhong D, Standfuss J, Royant A, Bessho Y, Essen LO, Tsai MD. Visualizing the DNA repair process by a photolyase at atomic resolution. Science 2023; 382:eadd7795. [PMID: 38033054 DOI: 10.1126/science.add7795] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.
Collapse
Affiliation(s)
- Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuhei Hosokawa
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Antonia Furrer
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | | | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hans-Joachim Emmerich
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Sophie Franz-Badur
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Chao Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Sylvain Engilberge
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Tobias Weinert
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wael Gad
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chun Yang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Wei-Ting Lin
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Yu-Chen Chang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Dardan Gashi
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emma Beale
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Karol Nass
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Chris Milne
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Wiktoria Zarzycka
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maisa Alkheder Alahmad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Filipp Bezold
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Valerie Fuchs
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Petra Gnau
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Stephan Kiontke
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Lukas Korf
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Viktoria Reithofer
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Elisa Marie Seiler
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Laura Werel
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Roberta Spadaccini
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
- Dipartimento di Scienze e tecnologie, Universita degli studi del Sannio, Benevento, Italy
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dongping Zhong
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for Ultrafast Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jörg Standfuss
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Antoine Royant
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
4
|
Jakhar N, Prabhakant A, Krishnan M. Mapping the recognition pathway of cyclobutane pyrimidine dimer in DNA by Rad4/XPC. Nucleic Acids Res 2023; 51:10132-10146. [PMID: 37757853 PMCID: PMC10602858 DOI: 10.1093/nar/gkad730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
UV radiation-induced DNA damages have adverse effects on genome integrity and cellular function. The most prevalent UV-induced DNA lesion is the cyclobutane pyrimidine dimer (CPD), which can cause skin disorders and cancers in humans. Rad4/XPC is a damage sensing protein that recognizes and repairs CPD lesions with high fidelity. However, the molecular mechanism of how Rad4/XPC interrogates CPD lesions remains elusive. Emerging viewpoints indicate that the association of Rad4/XPC with DNA, the insertion of a lesion-sensing β-hairpin of Rad4/XPC into the lesion site and the flipping of CPD's partner bases (5'-dA and 3'-dA) are essential for damage recognition. Characterizing these slow events is challenging due to their infrequent occurrence on molecular time scales. Herein, we have used enhanced sampling and molecular dynamics simulations to investigate the mechanism and energetics of lesion recognition by Rad4/XPC, considering multiple plausible pathways between the crystal structure of the Rad4-DNA complex and nine intermediate states. Our results shed light on the most likely sequence of events, their potential coupling and energetics. Upon association, Rad4 and DNA form an encounter complex in which CPD and its partner bases remain in the duplex and the BHD3 β-hairpin is yet to be inserted into the lesion site. Subsequently, sequential base flipping occurs, with the flipping of the 5'-dA base preceding that of the 3'-dA base, followed by the insertion of the BHD3 β-hairpin into the lesion site. The results presented here have significant implications for understanding the molecular basis of UV-related skin disorders and cancers and for paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nikhil Jakhar
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
5
|
Arciszewska K, Kowalska E, Bartnicki F, Bonarek P, Banaś AK, Strzałka W. DNA aptamer-based affinity chromatography system for purification of recombinant proteins tagged with lysine tag. J Chromatogr A 2023; 1692:463846. [PMID: 36780846 DOI: 10.1016/j.chroma.2023.463846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Affinity chromatography (AC) is one of the techniques widely used for the purification of recombinant proteins. In our previous study, we presented a successful application of the Argi system [1] for the purification of recombinant proteins, based on the specific interaction between an arginine tag and a DNA aptamer. Exploring the possible application of positively charged peptide tags in the purification of recombinant proteins, in this study we developed and characterized an AC system based on the specific and reversible interaction between a DNA aptamer and a lysine tag (Lys-tag) comprising five lysine residues (5 K). We optimized the length of both the selected DNA aptamer and Lys-tag which were named B5K aptamer and 5K-tag, respectively. The results showed that the stability of the B5K aptamer and 5K-tag was dependent on the presence of potassium ions. The conditions for mild elution of 5K-tagged protein from B5K aptamer were determined. Our study proved that the developed system can be used for the purification of recombinant proteins from Escherichia coli total protein extracts.
Collapse
Affiliation(s)
- Klaudia Arciszewska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
6
|
Mielko Z, Zhang Y, Sahay H, Liu Y, Schaich MA, Schnable B, Morrison AM, Burdinski D, Adar S, Pufall M, Van Houten B, Gordân R, Afek A. UV irradiation remodels the specificity landscape of transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2217422120. [PMID: 36888663 PMCID: PMC10089200 DOI: 10.1073/pnas.2217422120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.
Collapse
Affiliation(s)
- Zachery Mielko
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
| | - Harshit Sahay
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Yiling Liu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
| | - Brittani Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Abigail M Morrison
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Debbie Burdinski
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miles Pufall
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Bennett Van Houten
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA 15213
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Revealing intrinsic changes of DNA induced by spore photoproduct lesion through computer simulation. Biophys Chem 2023; 296:106992. [PMID: 36933500 DOI: 10.1016/j.bpc.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
In bacterial endospores, a cross-linked thymine dimer, 5-thyminyl-5,6-dihydrothymine, commonly referred to as the spore photoproduct (SP), is found as the dominant DNA photo lesion under UV radiation. During spore germination, SP is faithfully repaired by the spore photoproduct lyase (SPL) for normal DNA replication to resume. Despite this general mechanism, the exact way in which SP modifies the duplex DNA structure so that the damaged site can be recognized by SPL to initiate the repair process is still unclear. A previous X-ray crystallographic study, which used a reverse transcriptase as a DNA host template, captured a protein-bound duplex oligonucleotide containing two SP lesions; the study showed shortened hydrogen bonds between the AT base pairs involved in the lesions and widened minor grooves near the damaged sites. However, it remains to be determined whether the results accurately reflect the conformation of SP-containing DNA (SP-DNA) in its fully hydrated pre-repair form. To uncover the intrinsic changes in DNA conformation caused by SP lesions, we performed molecular dynamics (MD) simulations of SP-DNA duplexes in aqueous solution, using the nucleic acid portion of the previously determined crystal structure as a template. After MD relaxation, our simulated SP-DNAs showed weakened hydrogen bonds at the damaged sites compared to those in the undamaged DNA. Our analyses of the MD trajectories revealed a range of local and global structural distortions of DNA induced by SP. Specifically, the SP region displays a greater tendency to adopt an A-like-DNA conformation, and curvature analysis revealed an increase in the global bending compared to the canonical B-DNA. Although these SP-induced DNA conformational changes are relatively minor, they may provide a sufficient structural basis for SP to be recognized by SPL during the lesion repair process.
Collapse
|
8
|
Kufner CL, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Sequence dependent UV damage of complete pools of oligonucleotides. Sci Rep 2023; 13:2638. [PMID: 36788271 PMCID: PMC9929323 DOI: 10.1038/s41598-023-29833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.
Collapse
Affiliation(s)
- Corinna L. Kufner
- grid.38142.3c000000041936754XHarvard-Smithsonian Center for Astrophysics, Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 USA
| | - Stefan Krebs
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- grid.6936.a0000000123222966Chemistry Department, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- grid.5252.00000 0004 1936 973XBiomolecular Optics and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Oettingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
9
|
Bi X, Miao K, Wei L. Alkyne-Tagged Raman Probes for Local Environmental Sensing by Hydrogen-Deuterium Exchange. J Am Chem Soc 2022; 144:8504-8514. [PMID: 35508077 DOI: 10.1021/jacs.2c01991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkyne-tagged Raman probes have shown high promise for noninvasive and sensitive visualization of small biomolecules to understand their functional roles in live cells. However, the potential for alkynes to sense cellular environments that goes beyond imaging remains to be further explored. Here, we report a general strategy for Raman imaging-based local environment sensing by hydrogen-deuterium exchange (HDX) of terminal alkynes (termed alkyne-HDX). We first demonstrate, in multiple Raman probes, that deuterations of the alkynyl hydrogens lead to remarkable shifts of alkyne Raman peaks for about 130 cm-1, providing resolvable signals suited for imaging-based analysis with high specificity. Both our analytical derivation and experimental characterizations subsequently establish that HDX kinetics are linearly proportional to both alkyne pKas and environmental pDs. After validating the quantitative nature of this strategy, we apply alkyne-HDX to sensing local chemical and cellular environments. We establish that alkyne-HDX exhibits high sensitivity to various DNA structures and demonstrates the capacity to detect DNA structural changes in situ from UV-induced damage. We further show that this strategy is also applicable to resolve subtle pD variations in live cells. Altogether, our work lays the foundation for utilizing alkyne-HDX strategy to quantitatively sense the local environments for a broad spectrum of applications in complex biological systems.
Collapse
Affiliation(s)
- Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Lim W, Randisi F, Doye JPK, Louis AA. The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Res 2022; 50:2480-2492. [PMID: 35188542 PMCID: PMC8934635 DOI: 10.1093/nar/gkac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.
Collapse
Affiliation(s)
- Wilber Lim
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ferdinando Randisi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- FabricNano Limited, 192 Drummond St, London NW1 3HP, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
11
|
Póti Á, Szikriszt B, Gervai JZ, Chen D, Szüts D. Characterisation of the spectrum and genetic dependence of collateral mutations induced by translesion DNA synthesis. PLoS Genet 2022; 18:e1010051. [PMID: 35130276 PMCID: PMC8870599 DOI: 10.1371/journal.pgen.1010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10–20% of non-paired substitutions as well, underscoring the importance of the process. DNA base substitutions are the most common form of genomic mutations, formed both spontaneously and in response to environmental mutagens. One of the main mechanisms of base substitution mutagenesis is translesion synthesis, a process that relies on specialised DNA polymerases to replicate damaged DNA templates. In addition to incorrect base insertions at the site of lesions in the template, translesion polymerases may also generate ‘collateral’ mutations away from the lesion due to their lower accuracy in selecting the correct incoming nucleotide. In this study, we surveyed the whole genome sequence of experimental cell clones to examine the extent and genetic dependence of collateral mutagenesis in higher eukaryotes. Looking for close mutation pairs, we found that collateral mutations frequently occur near primary lesions generated by cisplatin or ultraviolet radiation in chicken and human cells, but are restricted to a short distance of approximately 25 base pairs. By analysing their sequence context, we showed that collateral mutations can also occur near correctly bypassed primary lesions and may be responsible for a considerable proportion of all base substitution mutations.
Collapse
Affiliation(s)
- Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Dan Chen
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Chaturvedi R, Long EC. Mechanistic studies of dinucleotide and oligonucleotide model cyclobutane pyrimidine dimer (CPD) DNA lesions under alkaline conditions. Bioorg Med Chem 2021; 54:116499. [PMID: 34922308 DOI: 10.1016/j.bmc.2021.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the most abundant mutagenic DNA lesions formed in mammalian cells upon exposure to UV-B radiation (280-315 nm) in sunlight. These lesions are thought to be chemically stable and to withstand high concentrations of acids and bases.While earlier investigations of DNA lesions containing saturated pyrimidines have shown that the C4 carbonyl is a potential target of nucleophilic attack, similar reactions with thymine nucleobase model CPDs clearly showed that the cis-syn CPD (major isomer) is stable in the presence of a high concentration of alkali at room temperature. Here is described the alkaline reactivity of these lesions when contained within a dinucleotide CPD model system. Results using cis-syn CPD formed from dinucleotide 5'-TpT-3' combined with [18O]-labelling indicated that CPD undergoes a water addition at the C4=O groups of these now saturated rings. The intermediate formed, however, completely reverts to the starting lesion. Along with confirming the target of water addition within CPD lesions, it was also determined that the two C4 carbonyls present on adjacent saturated pyrimidine rings of the photolesion undergo water exchange at different rates (3' > 5'). Moreover, the difference in reactivity exhibited by these two positions is not limited to a dinucleotide and was observed also in oligonucleotides. Overall, a full understanding of the chemistry of CPD lesions is crucial to our knowledge of naturally-occuring DNA modifications and may lead to further insight into their detection, modification, and biochemical recognition & repair.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202, United States.
| | - Eric C Long
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202, United States.
| |
Collapse
|
13
|
Schaich MA, Van Houten B. Searching for DNA Damage: Insights From Single Molecule Analysis. Front Mol Biosci 2021; 8:772877. [PMID: 34805281 PMCID: PMC8602339 DOI: 10.3389/fmolb.2021.772877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.
Collapse
Affiliation(s)
- Matthew A. Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Paul D, Mu H, Tavakoli A, Dai Q, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair (Amst) 2021; 107:103194. [PMID: 34428697 PMCID: PMC8934541 DOI: 10.1016/j.dnarep.2021.103194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Rad4/XPC recognizes diverse DNA lesions to initiate nucleotide excision repair (NER). However, NER propensities among lesions vary widely and repair-resistant lesions are persistent and thus highly mutagenic. Rad4 recognizes repair-proficient lesions by unwinding ('opening') the damaged DNA site. Such 'opening' is also observed on a normal DNA sequence containing consecutive C/G's (CCC/GGG) when tethered to Rad4 to prevent protein diffusion. However, it was unknown if such tethering-facilitated DNA 'opening' could occur on any DNA or if certain structures/sequences would resist being 'opened'. Here, we report that DNA containing alternating C/G's (CGC/GCG) failed to be opened even when tethered; instead, Rad4 bound in a 180°-reversed manner, capping the DNA end. Fluorescence lifetime studies of DNA conformations in solution showed that CCC/GGG exhibits local pre-melting that is absent in CGC/GCG. In MD simulations, CGC/GCG failed to engage Rad4 to promote 'opening' contrary to CCC/GGG. Altogether, our study illustrates how local sequences can impact DNA recognition by Rad4/XPC and how certain DNA sites resist being 'opened' even with Rad4 held at that site indefinitely. The contrast between CCC/GGG and CGC/GCG sequences in Rad4-DNA recognition may help decipher a lesion's mutagenicity in various genomic sequence contexts to explain lesion-determined mutational hot and cold spots.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
15
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
16
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
17
|
A Gadolinium(III) Complex Based on the Thymine Nucleobase with Properties Suitable for Magnetic Resonance Imaging. Int J Mol Sci 2021; 22:ijms22094586. [PMID: 33925589 PMCID: PMC8123898 DOI: 10.3390/ijms22094586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX, and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively. On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable candidate for contrast-enhanced magnetic resonance imaging.
Collapse
|
18
|
Abstract
The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes (Basel) 2020; 11:E1304. [PMID: 33158066 PMCID: PMC7694213 DOI: 10.3390/genes11111304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Although solar light is indispensable for the functioning of plants, this environmental factor may also cause damage to living cells. Apart from the visible range, including wavelengths used in photosynthesis, the ultraviolet (UV) light present in solar irradiation reaches the Earth's surface. The high energy of UV causes damage to many cellular components, with DNA as one of the targets. Putting together the puzzle-like elements responsible for the repair of UV-induced DNA damage is of special importance in understanding how plants ensure the stability of their genomes between generations. In this review, we have presented the information on DNA damage produced under UV with a special focus on the pyrimidine dimers formed between the neighboring pyrimidines in a DNA strand. These dimers are highly mutagenic and cytotoxic, thus their repair is essential for the maintenance of suitable genetic information. In prokaryotic and eukaryotic cells, with the exception of placental mammals, this is achieved by means of highly efficient photorepair, dependent on blue/UVA light, which is performed by specialized enzymes known as photolyases. Photolyase properties, as well as their structure, specificity and action mechanism, have been briefly discussed in this paper. Additionally, the main gaps in our knowledge on the functioning of light repair in plant organelles, its regulation and its interaction between different DNA repair systems in plants have been highlighted.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| | - Dariusz Dziga
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.K.B.); (P.Z.); (E.K.); (A.B.)
| |
Collapse
|
20
|
Sánchez-Navarrete J, Ruiz-Pérez NJ, Guerra-Trejo A, Toscano-Garibay JD. Simplified modeling of E. coli mortality after genome damage induced by UV-C light exposure. Sci Rep 2020; 10:11240. [PMID: 32647236 PMCID: PMC7347587 DOI: 10.1038/s41598-020-67838-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
UV light is a group of high-energy waves from the electromagnetic spectrum. There are three types of UV radiations: UV-A, -B and -C. UV-C light are the highest in energy, but most are retained by the ozone layer. UV-A and -B reach the earth's surface and cause damage on living organisms, being considered as mutagenic physical agents. Numerous test models are used to study UV mutagenicity; some include special lamps, cell cultures and mathematical modeling. Mercury lamps are affordable and useful sources of UV-C light due to their emission at near the maximum absorption peak of nucleic acids. E. coli cultures are widely used because they have DNA-damage and -repairing mechanisms fairly similar to humans. In here we present two simple models that describe UV-C light incidence on a genome matrix, using fundamental quantum-mechanical concepts and considering light as a particle with a discontinuous distribution. To test the accuracy of our equations, stationary phase cultures of several E. coli strains were exposed to UV-C light in 30 s-intervals. Surviving CFUs were counted and survival/mortality curves were constructed. These graphs adjusted with high goodness of fit to the regression predictions. Results were also analyzed using three main parameters: quantum yield, specific speed and time of mortality.
Collapse
Affiliation(s)
- Jaime Sánchez-Navarrete
- Laboratorio de Investigación en Toxicología, Hospital Juárez de México, Av. Instituto Politécnico Nacional #5160 Col. Magdalena de Las Salinas, Ciudad de México, Mexico, C.P. 07760, Mexico
| | - Nancy Jannet Ruiz-Pérez
- Laboratorio de Investigación en Toxicología, Hospital Juárez de México, Av. Instituto Politécnico Nacional #5160 Col. Magdalena de Las Salinas, Ciudad de México, Mexico, C.P. 07760, Mexico
| | - Armando Guerra-Trejo
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio Y Plan de Ayala S/N, Col. Santo Tomás, Ciudad de México, Mexico, C.P. 11340, Mexico
| | - Julia Dolores Toscano-Garibay
- Laboratorio de Investigación en Toxicología, Hospital Juárez de México, Av. Instituto Politécnico Nacional #5160 Col. Magdalena de Las Salinas, Ciudad de México, Mexico, C.P. 07760, Mexico.
| |
Collapse
|
21
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
22
|
Ghodke H, Ho HN, van Oijen AM. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. Nat Commun 2020; 11:1477. [PMID: 32198385 PMCID: PMC7083872 DOI: 10.1038/s41467-020-15179-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/23/2020] [Indexed: 01/01/2023] Open
Abstract
In the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB. Here we characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB by following functional, fluorescently tagged UvrA molecules in live TCR-deficient or wild-type cells. The lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, the lifetimes of UvrA strongly depended on, and matched those of Mfd. Overall, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells. In Escherichia coli, the UvrAB damage sensor recognizes helix-distorting lesions by itself or via Mfd bound to stalled RNA polymerase. Here authors use single-molecule fluorescence imaging to quantify the kinetic signatures of interactions of UvrA with Mfd and UvrB in live cells.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| |
Collapse
|
23
|
Paul D, Mu H, Zhao H, Ouerfelli O, Jeffrey PD, Broyde S, Min JH. Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Res 2020; 47:6015-6028. [PMID: 31106376 PMCID: PMC6614856 DOI: 10.1093/nar/gkz359] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Failure in repairing ultraviolet radiation-induced DNA damage can lead to mutations and cancer. Among UV-lesions, the pyrimidine–pyrimidone (6-4) photoproduct (6-4PP) is removed from the genome much faster than the cyclobutane pyrimidine dimer (CPD), owing to the more efficient recognition of 6-4PP by XPC-RAD23B, a key initiator of global-genome nucleotide excision repair (NER). Here, we report a crystal structure of a Rad4–Rad23 (yeast XPC-Rad23B ortholog) bound to 6-4PP-containing DNA and 4-μs molecular dynamics (MD) simulations examining the initial binding of Rad4 to 6-4PP or CPD. This first structure of Rad4/XPC bound to a physiological substrate with matched DNA sequence shows that Rad4 flips out both 6-4PP-containing nucleotide pairs, forming an ‘open’ conformation. The MD trajectories detail how Rad4/XPC initiates ‘opening’ 6-4PP: Rad4 initially engages BHD2 to bend/untwist DNA from the minor groove, leading to unstacking and extrusion of the 6-4PP:AA nucleotide pairs towards the major groove. The 5′ partner adenine first flips out and is captured by a BHD2/3 groove, while the 3′ adenine extrudes episodically, facilitating ensuing insertion of the BHD3 β-hairpin to open DNA as in the crystal structure. However, CPD resists such Rad4-induced structural distortions. Untwisting/bending from the minor groove may be a common way to interrogate DNA in NER.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hong Zhao
- Organic Synthesis Core, Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
24
|
Lahiri I, Xu J, Han BG, Oh J, Wang D, DiMaio F, Leschziner AE. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. J Struct Biol 2019; 207:270-278. [PMID: 31200019 PMCID: PMC6711803 DOI: 10.1016/j.jsb.2019.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023]
Abstract
Despite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface. Recently, this approach was successfully used to solve a high-resolution structure of a test sample, a bacterial ribosome. However, whether this method can be used for samples where interaction with the air-water interface has been shown to be problematic remains to be determined. Here we report a 3.1 Å structure of an RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion (Pol II EC(CPD)) solved using streptavidin grids. Our previous attempt to solve this structure using conventional sample preparation methods resulted in a poor quality cryo-EM map due to Pol II EC(CPD)'s adopting a strong preferred orientation. Imaging the same sample on streptavidin grids improved the angular distribution of its view, resulting in a high-resolution structure. This work shows that streptavidin affinity grids can be used to address known challenges posed by the interaction with the air-water interface.
Collapse
Affiliation(s)
- Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bong Gyoon Han
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Terai Y, Sato R, Yumiba T, Harada R, Shimizu K, Toga T, Ishikawa-Fujiwara T, Todo T, Iwai S, Shigeta Y, Yamamoto J. Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities. Nucleic Acids Res 2019; 46:6761-6772. [PMID: 29762762 PMCID: PMC6061865 DOI: 10.1093/nar/gky364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022] Open
Abstract
(6–4) Photolyases ((6–4)PLs) are flavoenzymes that repair the carcinogenic UV-induced DNA damage, pyrimidine(6–4)pyrimidone photoproducts ((6–4)PPs), in a light-dependent manner. Although the reaction mechanism of DNA photorepair by (6–4)PLs has been intensively investigated, the molecular mechanism of the lesion recognition remains obscure. We show that a well-conserved arginine residue in Xenopus laevis (6–4)PL (Xl64) participates in DNA binding, through Coulomb and CH–π interactions. Fragment molecular orbital calculations estimated attractive interaction energies of –80–100 kcal mol–1 for the Coulomb interaction and –6 kcal mol–1 for the CH–π interaction, and the loss of either of them significantly reduced the affinity for (6–4)PP-containing oligonucleotides, as well as the quantum yield of DNA photorepair. From experimental and theoretical observations, we formulated a DNA binding model of (6–4)PLs. Based on the binding model, we mutated this Arg in Xl64 to His, which is well conserved among the animal cryptochromes (CRYs), and found that the CRY-type mutant exhibited reduced affinity for the (6–4)PP-containing oligonucleotides, implying the possible molecular origin of the functional diversity of the photolyase/cryptochrome superfamily.
Collapse
Affiliation(s)
- Yuma Terai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryuma Sato
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takahiro Yumiba
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kohei Shimizu
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tatsuya Toga
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
26
|
Huang D, Chen S, Pu J, Tan X, Zhou Y. Exploring Cycloreversion Reaction of Cyclobutane Pyrimidine Dimers Quantum Mechanically. J Phys Chem A 2019; 123:2025-2039. [PMID: 30776239 DOI: 10.1021/acs.jpca.8b12345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclobutane pyrimidine dimer (CPD) is a major photoproduct of deoxyribonucleic acid (DNA) that is damaged by ultraviolet light. This DNA lesion can be repaired by DNA photolyase with the aid of UV light and two cofactors. To understand the repair mechanism of CPD and whether protonation of CPD participates in the DNA repair process, the cycloreversion reactions of four CPD models and proton transfers between the adjacent residue Glu283 and CPD models were explored through the quantum mechanical method. Two-dimensional maps of potential energy surface in a vacuum and in implicit water solution were calculated at the ωB97XD/6-311++G(2df,2pd) level. One-dimensional potential energy profiles were computed for proton transfer reactions. Among the models that have been considered, both in a vacuum and in water solution, the results indicate that the most likely repair mechanism involves CPD•2- radical anion splitting in a stepwise manner. C5-C5' splits first, and C6-C6' splits later. The computed free energies of activation of the two splitting steps are 0.9 and 3.1 kcal/mol, respectively. The adjacent Glu283 may stabilize the CPD•2- radical anion through hydrogen bond and increase the quantum yield; however, protonating the CPD radical anion by Glu283 cannot accelerate the rate of ring opening.
Collapse
Affiliation(s)
- Donglian Huang
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Shanfeng Chen
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology , Indiana University-Purdue University Indianapolis , 402 N. Blackford St. , Indianapolis , Indiana 46202 , United States
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , 188 Daxue East Road , Nanning , Guangxi 530006 , China
| |
Collapse
|
27
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
28
|
Zhang W, Wang G, Liang A. DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:147-171. [PMID: 31338819 DOI: 10.1007/978-981-13-7342-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, hematopoietic stem cells (HSCs) adopt unique responsive pathways counteracting with the DNA-damaging assaults to weigh the balance between the maintenance of normal stem cell poor for whole-life blood regeneration and the transformation to leukemia stem cells (LSCs) for leukemia initiation. LSCs also take actions of combating with the attack launched by externally therapeutic drugs that can kill most leukemic cells, to avoid extermination and promote disease relapse. Therefore, the collection of knowledge about all these underlined mechanisms would present a preponderance for later studies. In this chapter, the universal DNA damage response (DDR) mechanisms were firstly introduced, and then DDR of HSCs were presented focusing on the DNA double-strand breaks in the quiescent state of HSCs, which poses a big advantage in promoting its transformation into preleukemic HSCs. Lastly, the DDR of LSCs were summarized based on the major outcomes triggered by different pathways in specific leukemia, upon which some aspects for future investigations were envisioned under our currently limited scope of knowledge.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Zutterling C, Mursalimov A, Talhaoui I, Koshenov Z, Akishev Z, Bissenbaev AK, Mazon G, Geacintov NE, Gasparutto D, Groisman R, Zharkov DO, Matkarimov BT, Saparbaev M. Aberrant repair initiated by the adenine-DNA glycosylase does not play a role in UV-induced mutagenesis in Escherichia coli. PeerJ 2018; 6:e6029. [PMID: 30568855 PMCID: PMC6286661 DOI: 10.7717/peerj.6029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2'-deoxyguanosine-5'-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. METHODS Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproduct (6-4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. RESULTS We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6-4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. DISCUSSION These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.
Collapse
Affiliation(s)
- Caroline Zutterling
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aibek Mursalimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ibtissam Talhaoui
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | - Zhanat Koshenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Gerard Mazon
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Didier Gasparutto
- CEA, CNRS, INAC, SyMMES, Université Grenoble Alpes, Grenoble, France
| | - Regina Groisman
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Murat Saparbaev
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
30
|
Maestre-Reyna M, Yamamoto J, Huang WC, Tsai MD, Essen LO, Bessho Y. Twist and turn: a revised structural view on the unpaired bubble of class II CPD photolyase in complex with damaged DNA. IUCRJ 2018; 5:608-618. [PMID: 30224964 PMCID: PMC6126647 DOI: 10.1107/s205225251800996x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases harness the energy of blue light to repair UV-induced DNA CPDs. Upon binding, CPD photolyases cause the photodamage to flip out of the duplex DNA and into the catalytic site of the enzyme. This process, called base-flipping, induces a kink in the DNA, as well as an unpaired bubble, which are stabilized by a network of protein-nucleic acid interactions. Previously, several co-crystal structures have been reported in which the binding mode of CPD photolyases has been studied in detail. However, in all cases the internucleoside linkage of the photodamage site was a chemically synthesized formacetal analogue and not the natural phosphodiester. Here, the first crystal structure and conformational analysis via molecular-dynamics simulations of a class II CPD photolyase in complex with photodamaged DNA that contains a natural cyclobutane pyrimidine dimer with an intra-lesion phosphodiester linkage are presented. It is concluded that a highly conserved bubble-intruding region (BIR) mediates stabilization of the open form of CPD DNA when complexed with class II CPD photolyases.
Collapse
Affiliation(s)
- Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Strasse 6, Marburg 35032, Germany
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| |
Collapse
|
31
|
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair (Amst) 2018; 71:43-55. [PMID: 30174298 DOI: 10.1016/j.dnarep.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic transcription-coupled nucleotide excision repair (TC-NER) is a pathway that removes DNA lesions capable of blocking RNA polymerase II (Pol II) transcription from the template strand. This process is initiated by lesion-arrested Pol II and the recruitment of Cockayne Syndrome B protein (CSB). In this review, we will focus on the lesion recognition steps of eukaryotic TC-NER and summarize the recent research progress toward understanding the structural basis of Pol II-mediated lesion recognition and Pol II-CSB interactions. We will discuss the roles of CSB in both TC-NER initiation and transcription elongation. Finally, we propose an updated model of tripartite lesion recognition and verification for TC-NER in which CSB ensures Pol II-mediated recognition of DNA lesions for TC-NER.
Collapse
|
32
|
El-Yazbi AF, Wong A, Loppnow GR. A luminescent probe of mismatched DNA hybridization: Location and number of mismatches. Anal Chim Acta 2017; 994:92-99. [DOI: 10.1016/j.aca.2017.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/22/2023]
|
33
|
Pradhan S, Mattaparthi VSK. Structural dynamics and interactions of Xeroderma pigmentosum complementation group A (XPA98–210) with damaged DNA. J Biomol Struct Dyn 2017; 36:3341-3353. [DOI: 10.1080/07391102.2017.1388285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sushmita Pradhan
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| |
Collapse
|
34
|
Dehez F, Gattuso H, Bignon E, Morell C, Dumont E, Monari A. Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Res 2017; 45:3654-3662. [PMID: 28334906 PMCID: PMC5397166 DOI: 10.1093/nar/gkx148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
DNA photolesions constitute a particularly deleterious class of molecular defects responsible for the insurgence of a vast majority of skin malignant tumors. Dimerization of two adjacent thymines or cytosines mostly gives rise to cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone 64-PP as the most common defects. We perform all-atom classical simulations, up to 2 μs, of CPD and 64-PP embedded in a 16-bp duplex, which reveal the constrasted behavior of the two lesions. In particular we evidence a very limited structural deformation induced by CPD while 64-PP is characterized by a complex structural polymorphism. Our simulations also allow to unify the contrasting experimental structural results obtained by nuclear magnetic resonance or Förster Resonant Energy Transfer method, showing that both low and high bent structures are indeed accessible. These contrasting behaviors can also explain repair resistance or the different replication obstruction, and hence the genotoxicity of these two photolesions.
Collapse
Affiliation(s)
- François Dehez
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana Champaign
| | - Hugo Gattuso
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France
| | - Emmanuelle Bignon
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon1 (UCBL) CNRS, ENS Lyon, Lyon, France.,Université de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F69342 Lyon, France
| | - Christophe Morell
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon1 (UCBL) CNRS, ENS Lyon, Lyon, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F69342 Lyon, France
| | - Antonio Monari
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
35
|
Kim DK, Kim SJ, Kang DH. Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts. Food Res Int 2017; 97:280-287. [DOI: 10.1016/j.foodres.2017.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
|
36
|
Bastos EL, Farahani P, Bechara EJ, Baader WJ. Four-membered cyclic peroxides: Carriers of chemical energy. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3725] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Pooria Farahani
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Etelvino J.H. Bechara
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Wilhelm Josef Baader
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
37
|
Mu H, Geacintov NE, Min JH, Zhang Y, Broyde S. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway. Chem Res Toxicol 2017; 30:1344-1354. [PMID: 28460163 PMCID: PMC5478902 DOI: 10.1021/acs.chemrestox.7b00074] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N2-dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.
Collapse
Affiliation(s)
| | | | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|
38
|
Yang L, Jian Y, Setlow P, Li L. Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase. DNA Repair (Amst) 2017; 53:31-42. [PMID: 28320593 DOI: 10.1016/j.dnarep.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
Abstract
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min-1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min-1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
39
|
Sedova A, Banavali NK. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands. Biochemistry 2017; 56:1426-1443. [PMID: 28187685 DOI: 10.1021/acs.biochem.6b01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.
Collapse
Affiliation(s)
- Ada Sedova
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , Albany, New York 12222, United States
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health, CMS 2008, Biggs Laboratory, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States.,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , Albany, New York 12222, United States
| |
Collapse
|
40
|
Knips A, Zacharias M. Both DNA global deformation and repair enzyme contacts mediate flipping of thymine dimer damage. Sci Rep 2017; 7:41324. [PMID: 28128222 PMCID: PMC5269681 DOI: 10.1038/srep41324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/16/2016] [Indexed: 01/31/2023] Open
Abstract
The photo-induced cis-syn-cyclobutane pyrimidine (CPD) dimer is a frequent DNA lesion. In bacteria photolyases efficiently repair dimers employing a light-driven reaction after flipping out the CPD damage to the active site. How the repair enzyme identifies a damaged site and how the damage is flipped out without external energy is still unclear. Employing molecular dynamics free energy calculations, the CPD flipping process was systematically compared to flipping undamaged nucleotides in various DNA global states and bound to photolyase enzyme. The global DNA deformation alone (without protein) significantly reduces the flipping penalty and induces a partially looped out state of the damage but not undamaged nucleotides. Bound enzyme further lowers the penalty for CPD damage flipping with a lower free energy of the flipped nucleotides in the active site compared to intra-helical state (not for undamaged DNA). Both the reduced penalty and partial looping by global DNA deformation contribute to a significantly shorter mean first passage time for CPD flipping compared to regular nucleotides which increases the repair likelihood upon short time encounter between repair enzyme and DNA.
Collapse
Affiliation(s)
- Alexander Knips
- Physik-Department T38, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| |
Collapse
|
41
|
Schelvis JPM, Gindt YM. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA. Photochem Photobiol 2017; 93:26-36. [PMID: 27891613 DOI: 10.1111/php.12678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 01/02/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyase (PL) is a structure-specific DNA repair enzyme that uses blue light to repair CPD on DNA. Cryptochrome (CRY) DASH enzymes use blue light for the repair of CPD lesions on single-stranded (ss) DNA, although some may also repair these lesions on double-stranded (ds) DNA. In addition, CRY DASH may be involved in blue light signaling, similar to cryptochromes. The focus of this review is on spectroscopic and biophysical-chemical experiments of the enzyme-substrate complex that have contributed to a more detailed understanding of all the aspects of the CPD repair mechanism of CPD photolyase and CRY DASH. This will be performed in the backdrop of the available X-ray crystal structures of these enzymes bound to a CPD-like lesion. These structures helped to confirm conclusions that were drawn earlier from spectroscopic and biophysical-chemical experiments, and they have a critical function as a framework to design new experiments and to interpret new experimental data. This review will show the important synergy between X-ray crystallography and spectroscopic/biophysical-chemical investigations that is essential to obtain a sufficiently detailed picture of the overall mechanism of CPD photolyases and CRY DASH proteins.
Collapse
Affiliation(s)
| | - Yvonne M Gindt
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ
| |
Collapse
|
42
|
Mendieta-Moreno JI, Trabada DG, Mendieta J, Lewis JP, Gómez-Puertas P, Ortega J. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer. J Phys Chem Lett 2016; 7:4391-4397. [PMID: 27768300 DOI: 10.1021/acs.jpclett.6b02168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
Collapse
Affiliation(s)
- Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
| | - Daniel G Trabada
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
| | - Jesús Mendieta
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
- Departamento de Biotecnología, Universidad Francisco de Vitoria , ctra. Pozuelo-Majadahonda, km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - James P Lewis
- Department of Physics, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Center of Molecular Biology Severo Ochoa (CSIC-UAM) , ES-28049 Madrid, Spain
| | - José Ortega
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , ES-28049 Madrid, Spain
| |
Collapse
|
43
|
Hedglin M, Pandey B, Benkovic SJ. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. eLife 2016; 5. [PMID: 27770570 PMCID: PMC5123862 DOI: 10.7554/elife.19788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI:http://dx.doi.org/10.7554/eLife.19788.001
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Binod Pandey
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| |
Collapse
|
44
|
Adhikari S, Lin G, Li L. Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions. J Org Chem 2016; 81:8570-6. [PMID: 27537985 DOI: 10.1021/acs.joc.6b01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA lesions may reduce the electron density at the nucleobases, making them prone to further modifications upon the alkaline treatment. The dominant DNA photolesion found in UV-irradiated bacterial endospores is a thymine dimer, 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP). Here we report a stepwise addition/elimination reaction in the SP hydrolysis product under strong basic conditions where a ureido group is added to the carboxyl moiety to form a cyclic amide, regenerating SP after eliminating a hydroxide ion. Direct amidation of carboxylic acids by reaction with amines in the presence of a catalyst is well documented; however, it is very rare for an amidation reaction to occur without activation. This uncatalyzed SP reverse reaction in aqueous solution is even more surprising because the carboxyl moiety is not a good electrophile due to the negative charge it carries. Examination of the base-catalyzed hydrolyses of two other saturated pyrimidine lesions, 5,6-dihydro-2'-deoxyuridine and pyrimidine (6-4) pyrimidone photoproduct, reveals that neither reaction is reversible even though all three hydrolysis reactions may share the same gem-diol intermediate. Therefore, the SP structure where the two thymine residues maintain a stacked conformation likely provides the needed framework enabling this highly unusual carboxyl addition/elimination reaction.
Collapse
Affiliation(s)
- Surya Adhikari
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States.,Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
45
|
O'Flaherty DK, Wilds CJ. Preparation of Intrastrand {G}O(6) -Alkylene-O(6) {G} Cross-Linked Oligonucleotides. ACTA ACUST UNITED AC 2016; 66:5.17.1-5.17.24. [PMID: 27584704 DOI: 10.1002/cpnc.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes the preparation O(6) -2'-deoxyguanosine-butylene-O(6) -2'-deoxyguanosine dimer phosphoramidites and precursors for incorporation of site-specific intrastrand cross-links (IaCL) into DNA oligonucleotides. Protected 2'-deoxyguanosine dimers are produced using the Mitsunobu reaction. IaCL DNA containing the intradimer phosphodiester are first chemically phosphorylated, followed by a ring-closing reaction using the condensing reagent 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole. Phosphoramidites are incorporated into oligonucleotides by solid-phase synthesis and standard deprotection and cleavage protocols are employed. This approach allows for the preparation of IaCL DNA substrates in amounts and purity amenable for biophysical characterization, and biochemical studies as substrates to investigate DNA repair and bypass pathways. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
46
|
Investigation of the mechanisms of photo-induced formation of cyclobutane dimers of cytosine and 2,4-diaminopyrimidine. J Mol Model 2016; 22:230. [PMID: 27572158 DOI: 10.1007/s00894-016-3087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The mechanisms of the formation of cyclobutane dimers (CBD) of cytosine and 2,4-diaminopyrimidine were studied at the CC2 theoretical level and cc-pVDZ basis functions. Four orientations of the two monomers are explored: cys-syn, cis-anti, trans-syn, and trans-anti. The research revealed that in all cases the cyclobutane structures are formed along the (1)ππ* excited-state reaction paths of the stacked aggregates. We localized the S1/S0 conical intersections mediating those transformations. The results obtained agree well with the previously reported investigations on the cis-syn cyclodimer formations of other pyrimidines.
Collapse
|
47
|
High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 2016; 6:27337. [PMID: 27263658 PMCID: PMC4897087 DOI: 10.1038/srep27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization.
Collapse
|
48
|
Abstract
Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar St./HRT 213, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar St./HRT 213, New Haven, CT 06520-8040, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8040 USA.
| |
Collapse
|
49
|
Knips A, Zacharias M. Influence of a cis,syn-cyclobutane pyrimidine dimer damage on DNA conformation studied by molecular dynamics simulations. Biopolymers 2016; 103:215-22. [PMID: 25382106 DOI: 10.1002/bip.22586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/03/2014] [Indexed: 02/01/2023]
Abstract
The photo-induced formation of cis-syn-cyclobutane pyrimidine dimers (CPD) is a highly mutagenic and cancerogenic DNA lesion. In bacteria photolyases can efficiently reverse the dimer formation employing a light-driven reaction after looping out the CPD damaged bases into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The CPD damage may alter the DNA structure and dynamics already in the absence of the repair enzyme which can facilitate the initial binding of a photolyase repair enzyme. To characterize the effect of a CPD damage, extensive comparative molecular dynamics (MD) simulations on duplex DNA with central regular or CPD damaged nucleotides were performed supplemented with simulations of the DNA-photolyase complex. Although no spontaneous flipping out transitions of the damaged bases were observed, the simulations showed significant differences in the conformational states of regular and CPD damage DNA. The isolated damaged DNA adopted transient conformations which resembled the global shape of the repair enzyme bound conformation more closely compared to regular B-DNA. In particular, these conformational changes were observed in most of helical and structural parameters where the protein bound DNA differs drastically from regular B-DNA. It is likely that the transient overlap of isolated DNA with the enzyme bound DNA conformation plays a decisive role for the specific and rapid initial recognition by the repair enzyme prior to the looping out process of the damaged DNA.
Collapse
Affiliation(s)
- Alexander Knips
- Physik-Department T38, Technische Universität München, James-Franck-Str. 1, D-85748, Garching, Germany
| | | |
Collapse
|
50
|
Churchill CDM, Eriksson LA, Wetmore SD. DNA Distortion Caused by Uracil-Containing Intrastrand Cross-Links. J Phys Chem B 2016; 120:1195-204. [PMID: 26830475 DOI: 10.1021/acs.jpcb.5b10381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four uracil-containing intrastrand cross-links have been detected in human cells upon UV irradiation of 5-bromouracil-containing DNA, namely 5'-G[8-5]U-3', 5'-U[5-8]G-3', 5'-A[8-5]U-3', and 5'-A[2-5]U-3'. These lesions feature unique composition and connectivity compared with other intrastrand cross-links reported in the literature. For the first time, structural information obtained using molecular dynamics (MD) simulations reveal that all four lesions distort the DNA helix, which can involve an extrahelical location of the cross-link, changes in the helical interactions of the complementary nucleotides, or disruption of hydrogen bonding in the flanking base pairs up to two positions from the cross-linked site; however, the degree of distortion varies between the cross-links, being affected by the sequence, nucleobase-nucleobase connectivity, and the purine involved. Most importantly, the relative distortion of the damaged DNA provides the first structural explanation for the observed abundances of the four uracil-containing cross-links. Furthermore, the highly distorted conformations suggest that these lesions will likely have severe implications for DNA replication and repair processes in cells.
Collapse
Affiliation(s)
- Cassandra D M Churchill
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, Göteborg 405 30, Sweden
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|