1
|
Basu M, Mainan A, Roy S, Mishra PP. Emergence of a dynamic G-tetraplex scaffold: uncovering low salt-induced conformational heterogeneity and the folding mechanism of telomeric DNA. Phys Chem Chem Phys 2025; 27:7104-7119. [PMID: 40109194 DOI: 10.1039/d4cp04362f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The topological diversity of human telomeric G-quadruplex structures is intrinsically related to their folding mechanisms, and is significantly modulated by ion-atmospheric conditions. Unlike previous studies that focused on higher Na+ or K+ concentrations, this study explores G-quadruplex folding and dynamics under low NaCl conditions (≤100 mM) using single-molecule FRET microscopy and advanced structure-based DNA simulation techniques. The smFRET data reveal three distinct populations: unfolded, intermediate dynamic triplex, and dynamic tetraplex structural ensemble. The broad distribution of the folded population highlights the dynamic nature of the quadruplex structure under low salt conditions. In agreement with smFRET results, free energy simulations show that with the increase of NaCl concentration, the population shifts towards the folded state, and differentiates all intermediate structural ensembles. The dynamic equilibrium between the triplex and tetraplex scaffolds explains the microscopic basis of conformational heterogeneity within the folded basin. Simulations also reveal that the flexibility of dynamic tetraplex bases depends on the equilibrium distribution of ions underpinning a few ion-mediated dynamic non-native interactions in the G-quadruplex structure. Contrary to the previously held belief that Na+ induces minimal structural heterogeneity, our combined experimental and simulation approaches demonstrate and rationalize the structural variability in G-quadruplexes under low NaCl concentrations.
Collapse
Affiliation(s)
- Manali Basu
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
3
|
Rout BP, Roy S, Srivatsan SG. 5-Fluoro-2'-deoxyuridine as an efficient 19F NMR reporter for G-quadruplex and i-motif structures. Bioorg Med Chem Lett 2025; 117:130060. [PMID: 39638157 DOI: 10.1016/j.bmcl.2024.130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
DNA sequences that are composed of multiple G- and C-tracts can potentially form non-canonical structures called G-quadruplex (GQ) or i-motif (iM), respectively. Such sequences are found at the ends of chromosomes (telomeric repeats) and in the promoter region of several genes that cause cancer. Despite extensive studies, distinguishing different GQ and iM topologies is not easy. In this work, we have used one of the conservatively modified nucleoside analogs, namely 5-fluoro-2'-deoxyuridine (FdU) to study different GQ and iM structures of the human telomeric (H-Telo) DNA repeat sequence using 19F NMR technique. The probe is minimally perturbing and distinguishes different GQ topologies by providing unique 19F signatures. Our findings suggest that the telomeric repeat assumes hybrid-type GQ structures in intracellular ionic conditions as opposed to a parallel form predicted by using synthetic cellular crowding mimics. Further, with the incorporation of the probe into a C-rich H-Telo DNA ON, we were able to study the transition from iM structure to a random coil structure. Taken together, FdU is a promising probe, which could be used to determine the structure of non-canonical nucleic acid motifs in vitro and potentially in the native cellular environment.
Collapse
Affiliation(s)
- Bhakti P Rout
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
4
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Aznauryan M, Birkedal V. Dynamics of G-Quadruplex Formation under Molecular Crowding. J Phys Chem Lett 2023; 14:10354-10360. [PMID: 37948600 DOI: 10.1021/acs.jpclett.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
G-quadruplex (G4) structures assemble from guanine-rich DNA sequences and are believed to regulate several key cellular processes. G4 formation and conformational interconversions are well-established to occur dynamically in vitro. However, a clear understanding of G4 formation dynamics in cells as well as under conditions mimicking the cellular environment is missing. To fill this gap, we have investigated the G4 dynamics in molecularly crowded solutions, thus replicating the effect of the excluded volume present in cells. The results show that the volume exclusion exerted by large crowding agents accelerates the rate of G4 formation by at least an order of magnitude, leading to significant G4 stabilization. Extrapolation from our experimental data predicts crowding-induced G4 stabilization by more than 3 kcal/mol, under crowding levels found in the cellular environment. Such effects are likely to be important for G4-driven regulatory functions.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Univ. Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | - Victoria Birkedal
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P. Int J Mol Sci 2023; 24:10274. [PMID: 37373425 PMCID: PMC10299155 DOI: 10.3390/ijms241210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
Affiliation(s)
| | | | | | | | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (M.H.)
| |
Collapse
|
7
|
Zhang Y, Huang J, Yu K, Cui X. G-Quadruplexes Formation by the C9orf72 Nucleotide Repeat Expansion d(GGGGCC) n and Conformation Regulation by Fangchinoline. Molecules 2023; 28:4671. [PMID: 37375224 DOI: 10.3390/molecules28124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The G-quadruplex (GQ)-forming hexanucleotide repeat expansion (HRE) in the C9orf72 (C9) gene has been found to be the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (collectively, C9ALS/FTD), implying the great significance of modulating C9-HRE GQ structures in C9ALS/FTD therapeutic treatment strategies. In this study, we investigated the GQ structures formed by varied lengths of C9-HRE DNA sequences d(GGGGCC)4 (C9-24mer) and d(GGGGCC)8 (C9-48mer), and found that the C9-24mer forms anti-parallel GQ (AP-GQ) in the presence of potassium ions, while the long C9-48mer bearing eight guanine tracts forms unstacked tandem GQ consisting of two C9-24mer unimolecular AP-GQs. Moreover, the natural small molecule Fangchinoline was screened out in order to be able to stabilize and alter the C9-HRE DNA to parallel GQ topology. Further study of the interaction of Fangchinoline with the C9-HRE RNA GQ unit r(GGGGCC)4 (C9-RNA) revealed that it can also recognize and improve the thermal stability of C9-HRE RNA GQ. Finally, use of AutoDock simulation results indicated that Fangchinoline binds to the groove regions of the parallel C9-HRE GQs. These findings pave the way for further studies of GQ structures formed by pathologically related long C9-HRE sequences, and also provide a natural small-molecule ligand that modulates the structure and stability of C9-HRE GQ, both in DNA and RNA levels. Altogether, this work may contribute to therapeutic approaches of C9ALS/FTD which take the upstream C9-HRE DNA region, as well as the toxic C9-HRE RNA, as targets.
Collapse
Affiliation(s)
- Yun Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junliu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kainan Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojie Cui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
8
|
Khatik SY, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Probing juxtaposed G-quadruplex and hairpin motifs using a responsive nucleoside probe: a unique scaffold for chemotherapy. Chem Sci 2023; 14:5627-5637. [PMID: 37265741 PMCID: PMC10231310 DOI: 10.1039/d3sc00519d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
9
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-molecule analysis of the improved variants of the G-quadruplex recognition protein G4P. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539902. [PMID: 37214990 PMCID: PMC10197523 DOI: 10.1101/2023.05.08.539902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
|
10
|
Trizna L, Osif B, Víglaský V. G-QINDER Tool: Bioinformatically Predicted Formation of Different Four-Stranded DNA Motifs from (GT) n and (GA) n Repeats. Int J Mol Sci 2023; 24:ijms24087565. [PMID: 37108727 DOI: 10.3390/ijms24087565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The recently introduced semi-orthogonal system of nucleic acid imaging offers a greatly improved method of identifying DNA sequences that are capable of adopting noncanonical structures. This paper uses our newly developed G-QINDER tool to identify specific repeat sequences that adopt unique structural motifs in DNA: TG and AG repeats. The structures were found to adopt a left-handed G-quadruplex form under extreme crowding conditions and a unique tetrahelical motif under certain other conditions. The tetrahelical structure likely consists of stacked AGAG-tetrads but, unlike G-quadruplexes, their stability does not appear to be dependent on the type of monovalent cation present. The occurrence of TG and AG repeats in genomes is not rare, and they are also found frequently in the regulatory regions of nucleic acids, so it is reasonable to assume that putative structural motifs, like other noncanonical forms, could play an important regulatory role in cells. This hypothesis is supported by the structural stability of the AGAG motif; its unfolding can occur even at physiological temperatures since the melting temperature is primarily dependent on the number of AG repeats in the sequence.
Collapse
Affiliation(s)
- Lukáš Trizna
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Branislav Osif
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| |
Collapse
|
11
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
12
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
13
|
Paul T, Opresko PL, Ha T, Myong S. Vectorial folding of telomere overhang promotes higher accessibility. Nucleic Acids Res 2022; 50:6271-6283. [PMID: 35687089 PMCID: PMC9226509 DOI: 10.1093/nar/gkac401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA15213, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
14
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
15
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
16
|
Liu YC, Yang DY, Sheu SY. Insights into the free energy landscape and salt-controlled mechanism of the conformational conversions between human telomeric G-quadruplex structures. Int J Biol Macromol 2021; 191:230-242. [PMID: 34536474 DOI: 10.1016/j.ijbiomac.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes have become attractive drug targets in cancer therapy. However, due to the polymorphism of G-quadruplex structures, it is difficult to experimentally verify the relevant structures of multiple intermediates and transition states in dynamic equilibrium. Hence, understanding the mechanism by which structural conversions of G-quadruplexes occur is still challenging. We conducted targeted molecular dynamics simulation with umbrella sampling to investigate how salt affects the conformational conversion of human telomeric G-quadruplex. Our results explore a unique view into the structures and energy barrier of the intermediates and transition states in the interconversion process. The pathway of G-quadruplex conformational interconversion was mapped out by a free energy landscape, consisting of branched parallel pathways with multiple energy basins. We propose a salt-controlled mechanism that as the salt concentration increases, the conformational conversion mechanism switches from multi-pathway folding to sequential folding pathways. The hybrid-I and hybrid-II structures are intermediates in the basket-propeller transformation. In high-salt solutions, the conformational conversion upon K+ binding is more feasible than upon Na+ binding. The free energy barrier for conformational conversions ranges from 1.6 to 4.6 kcal/mol. Our work will be beneficial in developing anticancer agents.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
17
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
18
|
Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021; 8:725541. [PMID: 34540899 PMCID: PMC8446445 DOI: 10.3389/fmolb.2021.725541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster's resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| |
Collapse
|
19
|
Laouer K, Schmid M, Wien F, Changenet P, Hache F. Folding Dynamics of DNA G-Quadruplexes Probed by Millisecond Temperature Jump Circular Dichroism. J Phys Chem B 2021; 125:8088-8098. [PMID: 34279936 DOI: 10.1021/acs.jpcb.1c01993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-quadruplexes play important roles in cellular regulatory functions, but despite significant experimental and theoretical efforts, their folding mechanisms remain poorly understood. In this context, we developed a T-jump experiment to access the thermal denaturation and renaturation dynamics of short intramolecular G-quadruplexes in vitro, on the time scale of a few hundred milliseconds. With this new setup, we compared the thermal denaturation and renaturation kinetics of three antiparallel topologies made of the human telomeric sequences d[(5'-GGG(TTAGGG)3-3']/Na+ and d[5'-AGGG(TTAGGG)3-3']/Na+ and the thrombin-binding aptamer sequence d[5'-GGTTGGTGTGGTTGG-3']/K+, with those of the parallel topology made of the human CEB25 minisatellite d[5'-AAGGGTGGGTGTAAGTGTGGGTGGGT-3']/Na+. In all cases, exponential kinetics of the order of several hundred milliseconds were observed. Measurements performed for different initial temperatures revealed distinct denaturation and renaturation dynamics, ruling out a simple two-state mechanism. The parallel topology, in which all guanines adopt an anti conformation, displays much slower dynamics than antiparallel topologies associated with very low activation barriers. This behavior can be explained by the constrained conformational space due to the presence of the single-base propeller loops that likely hinders the movement of the coiled DNA strand and reduces the contribution of the entropy during the renaturation process at high temperatures.
Collapse
Affiliation(s)
- K Laouer
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS -INSERM, Institut Polytechnique de Paris, 91128 Cedex Palaiseau, France
| | - M Schmid
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS -INSERM, Institut Polytechnique de Paris, 91128 Cedex Palaiseau, France
| | - F Wien
- L'orme des merisiers, Synchrotron SOLEIL, 91192 Gif sur Yvette, France
| | - P Changenet
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS -INSERM, Institut Polytechnique de Paris, 91128 Cedex Palaiseau, France
| | - F Hache
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS -INSERM, Institut Polytechnique de Paris, 91128 Cedex Palaiseau, France
| |
Collapse
|
20
|
Yang Y, Yang Y, Wang S, Li H, Chen DDY. Detecting the formation of human c-KIT oncogene promoter G-Quadruplex by Taylor dispersion analysis. Talanta 2021; 233:122533. [PMID: 34215036 DOI: 10.1016/j.talanta.2021.122533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
The formation of G-quadruplex (G4) structures in oncogenic G-rich promoter regions are implicated in their biological functions, especially the inhibition of transcription. The binding of cations is thought to contribute to the stabilization of the G4 formation and competition against the duplex formation in the genomic sequence. Furthermore, it might affect the recognition of DNA-binding proteins. Therefore, measuring the interaction between G4 DNA and cations in a free solution environment is critical for evaluating G4 DNA biological functions. However, how binding to cations (K+ and NH4+) affects the folding equilibrium of the G4 structure remains unclear. In this work, a Taylor dispersion analysis (TDA) method using a capillary electrophoresis (CE) instrument was established for the quantitative characterization of the cation-dependent G4 formation in the human c-KIT oncogene promoter region, as well as diffusivities and hydrodynamic radii of DNA variations before and after folding. Our results showed that both K+ and NH4+ can induce the random-coiled c-KIT DNA to unfold and form a more unstretched intermediate state and then fold into tightly structured G4s with smaller size. The G4 size induced by NH4+ was smaller than that induced by K+ ions, though these two cations induced the c-KIT G4 DNA formation with similar binding constants (order of magnitude around 106 M-1). The TDA method can be widely used for rapid structural analyses of trace amounts of DNA mixtures, which effectively differentiate DNA variations or DNA-ligand complex conformations.
Collapse
Affiliation(s)
- Yunhe Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shuangshuang Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
21
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
22
|
Ye S, Chen Z, Zhang X, Li F, Guo L, Hou XM, Wu WQ, Wang J, Liu C, Zheng K, Sun B. Proximal Single-Stranded RNA Destabilizes Human Telomerase RNA G-Quadruplex and Induces Its Distinct Conformers. J Phys Chem Lett 2021; 12:3361-3366. [PMID: 33783224 DOI: 10.1021/acs.jpclett.1c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-stranded guanine-rich RNA sequences have a propensity to fold into compact G-quadruplexes (RG4s). The conformational transitions of these molecules provide an important way to regulate their biological functions. Here, we examined the stability and conformation of an RG4-forming sequence identified near the end of human telomerase RNA. We found that a proximal single-stranded (ss) RNA significantly impairs RG4 stability at physiological K+ concentrations, resulting in a reduced RG4 rupture force of ∼ 24.4 pN and easier accessibility of the G-rich sequence. The destabilizing effect requires a minimum of six nucleotides of ssRNA and is effective at either end of RG4. Remarkably, this RG4-forming sequence, under the influence of such a proximal ssRNA, exhibits interconversions between at least three less stable RG4 conformers that might represent potential intermediates along its folding/unfolding pathway. This work provides insights into the stability and folding dynamics of RG4 that are essential for understanding its biological functions.
Collapse
Affiliation(s)
- Shasha Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fangfang Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cong Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
23
|
Drobysh M, Ramanaviciene A, Viter R, Ramanavicius A. Affinity Sensors for the Diagnosis of COVID-19. MICROMACHINES 2021; 12:390. [PMID: 33918184 PMCID: PMC8065593 DOI: 10.3390/mi12040390] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxygen species (ROS) level are mostly used for the generation of analytical signals, which can be accurately measured by electrochemical, optical, surface plasmon resonance, field-effect transistors, and some other methods and transducers. Electrochemical biosensors are the most consistent with the general trend towards, acceleration, and simplification of the bioanalytical process. These biosensors mostly are based on the determination of antigen-antibody interaction and are robust, sensitive, accurate, and sometimes enable label-free detection of an analyte. Along with the specification of biosensors, we also provide a brief overview of generally used testing techniques, and the description of the structure, life cycle and immune host response to SARS-CoV-2, and some deeper details of analytical signal detection principles.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, LT-10257 Vilnius, Lithuania;
- NanoTechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- NanoTechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania;
| | - Roman Viter
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- NanoTechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania;
| |
Collapse
|
24
|
Harkness RW, Hennecker C, Grün JT, Blümler A, Heckel A, Schwalbe H, Mittermaier AK. Parallel reaction pathways accelerate folding of a guanine quadruplex. Nucleic Acids Res 2021; 49:1247-1262. [PMID: 33469659 PMCID: PMC7897495 DOI: 10.1093/nar/gkaa1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded, guanine-rich nucleic acid structures that can influence a variety of biological processes such as the transcription and translation of genes and DNA replication. In many cases, a single G4-forming nucleic acid sequence can adopt multiple different folded conformations that interconvert on biologically relevant timescales, entropically stabilizing the folded state. The coexistence of different folded conformations also suggests that there are multiple pathways leading from the unfolded to the folded state ensembles, potentially modulating the folding rate and biological activity. We have developed an experimental method for quantifying the contributions of individual pathways to the folding of conformationally heterogeneous G4s that is based on mutagenesis, thermal hysteresis kinetic experiments and global analysis, and validated our results using photocaged kinetic NMR experiments. We studied the regulatory Pu22 G4 from the c-myc oncogene promoter, which adopts at least four distinct folded isomers. We found that the presence of four parallel pathways leads to a 2.5-fold acceleration in folding; that is, the effective folding rate from the unfolded to folded ensembles is 2.5 times as large as the rate constant for the fastest individual pathway. Since many G4 sequences can adopt many more than four isomers, folding accelerations of more than an order of magnitude are possible via this mechanism.
Collapse
Affiliation(s)
- Robert W Harkness
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main 60438, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
25
|
Xi H, Juhas M, Zhang Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens Bioelectron 2020; 167:112494. [PMID: 32791468 PMCID: PMC7403137 DOI: 10.1016/j.bios.2020.112494] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine rich DNA or RNA. The conformation and function of G-quadruplex are determined by a number of factors, including the number and polarity of nucleotide strands, the type of cations and the binding targets. Recent studies led to the discovery of additional advantageous attributes of G-quadruplex with the potential to be used in novel biosensors, such as improved ligand binding and unique folding properties. G-quadruplex based biosensor can detect various substances, such as metal ions, organic macromolecules, proteins and nucleic acids with improved affinity and specificity compared to standard biosensors. The recently developed G-quadruplex based biosensors include electrochemical and optical biosensors. A novel G-quadruplex based biosensors also show better performance and broader applications in the detection of a wide spectrum of pathogens, including SARS-CoV-2, the causative agent of COVID-19 disease. This review highlights the latest developments in the field of G-quadruplex based biosensors, with particular focus on the G-quadruplex sequences and recent applications and the potential of G-quadruplex based biosensors in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hui Xi
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
26
|
Knop JM, Mukherjee SK, Oliva R, Möbitz S, Winter R. Remodeling of the Conformational Dynamics of Noncanonical DNA Structures by Monomeric and Aggregated α-Synuclein. J Am Chem Soc 2020; 142:18299-18303. [PMID: 33075229 PMCID: PMC11134602 DOI: 10.1021/jacs.0c07192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on Parkinson's disease most often focuses on the ability of the protein α-synuclein (α-syn) to form oligomers and amyloid fibrils, and how such species promote brain death. However, there are indications that α-syn also plays a gene-regulatory role in the cell nucleus. Noncanonical tetrahelical nucleic acids, G-quadruplexes (G4Q), and i-motifs have been shown to play an important role in the control of genomic events. Using the conformation-sensitive single-molecule Förster resonance energy transfer technique we show that monomeric and oligomeric α-syn affect G4Qs and i-motifs in a different way and lead to remodeling of their conformational substates. Aggregated α-syn destabilizes the G4Q leading to unfolding. In contrast, both monomeric and aggregated α-syn enhance folding of the i-motif sequence of telomeric DNA. Importantly, macromolecular crowding is able to partially rescue G4Q from unfolding.
Collapse
Affiliation(s)
| | | | - Rosario Oliva
- Physical Chemistry I - Biophysical
Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Simone Möbitz
- Physical Chemistry I - Biophysical
Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical
Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
27
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
28
|
Di Antonio M, Ponjavic A, Radzevičius A, Ranasinghe RT, Catalano M, Zhang X, Shen J, Needham LM, Lee SF, Klenerman D, Balasubramanian S. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat Chem 2020; 12:832-837. [PMID: 32690897 PMCID: PMC7610488 DOI: 10.1038/s41557-020-0506-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/09/2020] [Indexed: 01/24/2023]
Abstract
Substantial evidence now exists to support that formation of DNA G-quadruplexes (G4s) is coupled to altered gene expression. However, approaches that allow us to probe G4s in living cells without perturbing their folding dynamics are required to understand their biological roles in greater detail. Herein, we report a G4-specific fluorescent probe (SiR-PyPDS) that enables single-molecule and real-time detection of individual G4 structures in living cells. Live-cell single-molecule fluorescence imaging of G4s was carried out under conditions that use low concentrations of SiR-PyPDS (20 nM) to provide informative measurements representative of the population of G4s in living cells, without globally perturbing G4 formation and dynamics. Single-molecule fluorescence imaging and time-dependent chemical trapping of unfolded G4s in living cells reveal that G4s fluctuate between folded and unfolded states. We also demonstrate that G4 formation in live cells is cell-cycle-dependent and disrupted by chemical inhibition of transcription and replication. Our observations provide robust evidence in support of dynamic G4 formation in living cells.
Collapse
Affiliation(s)
- Marco Di Antonio
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Imperial College London, Chemistry Department, Molecular Science Research Hub, London, UK
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, UK
- School of Physics and Astronomy, University of Leeds, Leeds, UK
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | - Marco Catalano
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiaoyun Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jiazhen Shen
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
30
|
Chasing Particularities of Guanine- and Cytosine-Rich DNA Strands. Molecules 2020; 25:molecules25030434. [PMID: 31972988 PMCID: PMC7037129 DOI: 10.3390/molecules25030434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
By substitution of natural nucleotides by their abasic analogs (i.e., 1',2'-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and followed formation of non-canonical structures. The impeded hybridization between the complementary strands leads to time-dependent structural transformations of guanine-rich strand that are herein characterized with the use of solution-state NMR, CD spectroscopy, and native polyacrylamide gel electrophoresis. Moreover, the DNA structural changes involve transformation of intra- into inter-molecular G-quadruplex structures that are thermodynamically favored. Intriguingly, the transition occurs in the presence of complementary cytosine-rich strands highlighting the inability of Watson-Crick base-pairing to preclude the transformation between G-quadruplex structures that occurs via intertwining mechanism and corroborates a role of G-quadruplex structures in DNA recombination processes.
Collapse
|
31
|
Puig Lombardi E, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res 2020; 48:1-15. [PMID: 31754698 PMCID: PMC6943126 DOI: 10.1093/nar/gkz1097] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine-rich nucleic acids can fold into the non-B DNA or RNA structures called G-quadruplexes (G4). Recent methodological developments have allowed the characterization of specific G-quadruplex structures in vitro as well as in vivo, and at a much higher throughput, in silico, which has greatly expanded our understanding of G4-associated functions. Typically, the consensus motif G3+N1-7G3+N1-7G3+N1-7G3+ has been used to identify potential G-quadruplexes from primary sequence. Since, various algorithms have been developed to predict the potential formation of quadruplexes directly from DNA or RNA sequences and the number of studies reporting genome-wide G4 exploration across species has rapidly increased. More recently, new methodologies have also appeared, proposing other estimates which consider non-canonical sequences and/or structure propensity and stability. The present review aims at providing an updated overview of the current open-source G-quadruplex prediction algorithms and straightforward examples of their implementation.
Collapse
Affiliation(s)
- Emilia Puig Lombardi
- Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244, 75005 Paris, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244, 75005 Paris, France
| |
Collapse
|
32
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
33
|
Choi HK, Lee KS, Shin HH, Koo JJ, Yeon GJ, Kim ZH. Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges. Acc Chem Res 2019; 52:3008-3017. [PMID: 31609583 DOI: 10.1021/acs.accounts.9b00358] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The initial observations of surface-enhanced Raman scattering (SERS) from individual molecules (single-molecule SERS, SMSERS) have triggered ever more detailed mechanistic studies on the SERS process. The studies not only reveal the existence of extremely enhanced and confined fields at the gaps of Ag or Au nanoparticles but also reveal that the spatial, spectral, and temporal behaviors of the SMSERS signal critically depend on many factors, including plasmon resonances of nanostructures, diffusion (lateral and orientational) of molecules, molecular electronic resonances, and metal-molecule charge transfers. SMSERS spectra, with their molecular vibrational fingerprints, should in principle provide molecule-specific information on individual molecules in a way that any other existing single-molecule detection method (such as the ones based on fluorescence, mechanical forces, or electrical currents) cannot. Therefore, by following the spectro-temporal evolution of SMSERS signals of reacting molecules, one should be able to follow chemical reaction events of individual molecules without any additional labels. Despite such potential, however, real applications of SMSERS for single-molecule chemistry and analytical chemistry are scarce. In this Account, we discuss whether and how we can use SMSERS to monitor single-molecule chemical kinetics. The central problem lies in the experimental challenges of separately characterizing and controlling various sources of fluctuations and spatial variations in such a way that we can extract only the chemically relevant information from time-varying SMSERS signals. This Account is organized as follows. First, we outline the standard theory of SMSERS, providing an essential guide for identifying sources of spatial heterogeneity and temporal fluctuations in SMSERS signals. Second, we show how single-molecule reaction events of surface-immobilized reactants manifest themselves in experimental SMSERS trajectories. Comparison of the reactive SMSERS data (magnitudes and frequencies of discrete transitions) and the predictions of SMSERS models also allow us to assess how faithfully the SMSERS models represent reality. Third, we show how SMSERS spectral features can be used to discover new reaction intermediates and to interrogate metal-molecule electronic interactions. Finally, we propose possible improvements in experimental design (including nanogap structures and molecular systems) to make SMSERS applicable to a broader range of chemical reactions occurring under ambient conditions. The specific examples discussed in this Account are centered around the single-molecule photochemistry of 4-nitrobenzenethiol on metals, but the conclusions drawn from each example are generally applicable to any reaction system involving small organic molecules.
Collapse
Affiliation(s)
- Han-Kyu Choi
- Department of Chemistry, Kunsan National University, Gunsan, Jeonbuk 54150, Korea
| | - Kang Sup Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ja-Jung Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
34
|
Zhou K, Liu J, Xiong X, Cheng M, Hu X, Narva S, Zhao X, Wu Y, Zhang W. Design, synthesis of 4,5-diazafluorene derivatives and their anticancer activity via targeting telomeric DNA G-quadruplex. Eur J Med Chem 2019; 178:484-499. [PMID: 31202994 DOI: 10.1016/j.ejmech.2019.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
In our work, 19 novel 4,5-diazafluorene derivatives (11a-d, 12a-d, 13a-d, 14a-c, 15c, 16a-c) bearing a 1,3-disubstituted pyrazol/thioxothiazolidinone or thioxothiazolidinone-oxadiazole moieties were designed, synthesized, preliminarily explored for their antitumor activities and in vitro mechanism. All compounds showed different values of antiproliferative activity against A549, AGS, HepG2 and MCF-7 cell lines through CCK-8. Especially, the compound 14c exhibited the strongest activity and best selectivity against A549 cells with an IC50 1.13 μM and an SI value of 7.01 relative to MRC-5 cells, which was better than cisplatin (SI = 1.80) as a positive control. Experimental results at extracellular level demonstrated that compounds 14a-c could strongly interact with the G-quadruplex(es) formed in a 26 nt telomeric G-rich DNA, in particular, the 14c exhibits quite strong binding affinity with an association equilibrium constant (KA) of 7.04(±0.16) × 107 M-1 and more than 1000-fold specificity to G4-DNA over ds-DNA and Mut-DNA at the compound/G4-DNA ratio of 1:1. Further trap assay ascertained that compounds 14a-c owned strong inhibitory ability of telomerase activity in A549 cells, suggesting that these compounds have great possibility to target telomeric G-quadruplexes and consequently indirectly inhibit the telomerase activity. In addition, it is worthy of note that the remarkable inhibitory effects of 14a-c on the mobility of tested cancer cells were observed by wound healing assays. Furthermore, molecular docking and UV-Vis spectral results unclose the rationale for the interaction of compounds with such G-quadruplex(es). These results indicate that the growth and metastasis inhibition of cancer cells mediated by these 4,5-diazafluorene derivatives possibly result from their interaction with telomeric G-quadruplexes, suggesting that 4,5-diazafluorene derivatives, especially 14c, possess potential as anticancer drugs.
Collapse
Affiliation(s)
- Kang Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiachun Liu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuqiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mei Cheng
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolin Hu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
35
|
Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019; 116:8350-8359. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.
Collapse
|
36
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
37
|
Abstract
Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.
Collapse
|
38
|
Zhang Y, Chen J, Ju H, Zhou J. Thermal denaturation profile: A straightforward signature to characterize parallel G-quadruplexes. Biochimie 2019; 157:22-25. [DOI: 10.1016/j.biochi.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
39
|
Takahashi S, Yamamoto J, Kitamura A, Kinjo M, Sugimoto N. Characterization of Intracellular Crowding Environments with Topology-Based DNA Quadruplex Sensors. Anal Chem 2019; 91:2586-2590. [PMID: 30624050 DOI: 10.1021/acs.analchem.8b04177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular crowding creates a unique environment in cells and imposes physical constraints such as the excluded volume effect, water activity, and dielectric constant that can affect the structure and function of biomolecules. It is therefore important to develop a method for quantifying the effects of molecular crowding in cells. In this study, we developed a Förster resonance energy transfer (FRET) probe based on a guanine-quadruplex (G4) DNA motif that shows distinct FRET signals in response to crowding conditions in the presence of salt and poly(ethylene glycol). FRET efficiencies varied in different solutions, reflecting the dependence of G4 stability and topology on salt concentration and water activity. In living cells, FRET signals in the nucleus were higher than those in the cytosol; the signals in membraneless nuclear compartments (i.e., nucleolus) were especially high, suggesting that a decrease in water activity is important for the crowding effect in the nucleus. Thus, the use of DNA sensors with variable structures can elucidate the local effects of molecular crowding in cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki , 305-8566 , Japan
| | - Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science , Hokkaido University , Sapporo , 001-0021 , Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science , Hokkaido University , Sapporo , 001-0021 , Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| |
Collapse
|
40
|
Abstract
The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA.
| |
Collapse
|
41
|
Wang L, Wang QM, Wang YR, Xi XG, Hou XM. DNA-unwinding activity of Saccharomyces cerevisiae Pif1 is modulated by thermal stability, folding conformation, and loop lengths of G-quadruplex DNA. J Biol Chem 2018; 293:18504-18513. [PMID: 30305390 DOI: 10.1074/jbc.ra118.005071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded DNA structures formed by Hoogsteen base pairing between stacked sets of four guanines. Pif1 helicase plays critical roles in suppressing genomic instability in the yeast Saccharomyces cerevisiae by resolving G4s. However, the structural properties of G4s in S. cerevisiae and the substrate preference of Pif1 for different G4s remain unknown. Here, using CD spectroscopy and 83 G4 motifs from S. cerevisiae ranging in length from 30 to 60 nucleotides, we first show that G4 structures can be formed with a broad range of loop sizes in vitro and that a parallel conformation is favored. Using single-molecule FRET analysis, we then systematically addressed Pif1-mediated unwinding of various G4s and found that Pif1 is sensitive to G4 stability. Moreover, Pif1 preferentially unfolded antiparallel G4s rather than parallel G4s having similar stability. Furthermore, our results indicate that most G4 structures in S. cerevisiae sequences have long loops and can be efficiently unfolded by Pif1 because of their low stability. However, we also found that G4 structures with short loops can be barely unfolded. This study highlights the formidable capability of Pif1 to resolve the majority of G4s in S. cerevisiae sequences, narrows the fractions of G4s that may be challenging for genomic stability, and provides a framework for understanding the influence of different G4s on genomic stability via their processing by Pif1.
Collapse
Affiliation(s)
- Lei Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Qing-Man Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Yi-Ran Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Xu-Guang Xi
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xi-Miao Hou
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| |
Collapse
|
42
|
Knop JM, Patra S, Harish B, Royer CA, Winter R. The Deep Sea Osmolyte Trimethylamine N-Oxide and Macromolecular Crowders Rescue the Antiparallel Conformation of the Human Telomeric G-Quadruplex from Urea and Pressure Stress. Chemistry 2018; 24:14346-14351. [PMID: 29993151 DOI: 10.1002/chem.201802444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Indexed: 11/10/2022]
Abstract
Organisms are thriving in the deep sea at pressures up to the 1 kbar level, which imposes severe stress on the conformational dynamics and stability of their biomolecules. The impact of osmolytes and macromolecular crowders, mimicking intracellular conditions, on the effect of pressure on the conformational dynamics of a human telomeric G-quadruplex (G4) DNA is explored in this study employing single-molecule Förster resonance energy transfer (FRET) experiments. In neat buffer, pressurization favors the parallel/hybrid state of the G4-DNA over the antiparallel conformation at ≈400 bar, finally leading to unfolding beyond 1000 bar. High-pressure NMR data support these findings. The folded topological conformers have different solvent accessible surface areas and cavity volumes, leading to different volumetric properties and hence pressure stabilities. The deep-sea osmolyte trimethylamine N-oxide (TMAO) and macromolecular crowding agents are able to effectively rescue the G4-DNA from unfolding in the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| | - Satyajit Patra
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| | - Balasubramanian Harish
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| | - Catherine A Royer
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| | - Roland Winter
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
43
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|
44
|
Miyata T, Shimada N, Maruyama A, Kawai K. Fluorescence Redox Blinking Adaptable to Structural Analysis of Nucleic Acids. Chemistry 2018; 24:6755-6761. [DOI: 10.1002/chem.201705668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Takafumi Miyata
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Naohiko Shimada
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology; Tokyo Institute of Technology; 4259 B-57 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8501 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1, Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
45
|
Zhang Y, Bao D, Wang S, Dong Y, Wu F, Li H, Liu D. A Modularly Designable Vesicle for Sequentially Multiple Loading. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703259. [PMID: 29282879 DOI: 10.1002/smll.201703259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/19/2017] [Indexed: 06/07/2023]
Abstract
The vesicle is one of the most intriguing platforms for drug delivery, which is believed to improve drug efficacy. In the past few decades, a great deal of materials have been explored to make vesicles, including lipids, block copolymers, dendrons, erythrocyte membranes, and even DNA. Other than shape and size control, most efforts are focused on achieving certain functions, for example, an abundance of stimuli-responsive features are introduced to vesicles, which can be applied to controllable release, such as pH, redox, light, radiation, enzyme etc. Besides, crosslinking or pegylation is used to increase vesicles' stability and elongate circulation time. By incorporating affinity ligands, vesicles can further accumulate to diseased cells or tissues to achieve targeting properties. Recently, multidrug delivery is believed to show a synergy effect in cancer therapy and has become a new direction in this field. However, coloading hydrophilic-hydrophobic small molecules, oligonucleotides, and peptides in the same size- and shape-controlled vesicle through a stepwise manner with high efficiency is still challenging. Herein, a modularly designable vesicle is reported for sequential multiple loading based on frame-guided assembly, which is believed to be an outstanding platform for drug delivery in the future.
Collapse
Affiliation(s)
- Yiyang Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dandan Bao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shuo Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuancheng Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fen Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Haitao Li
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Rigo R, Dean WL, Gray RD, Chaires JB, Sissi C. Conformational profiling of a G-rich sequence within the c-KIT promoter. Nucleic Acids Res 2018; 45:13056-13067. [PMID: 29069417 PMCID: PMC5727440 DOI: 10.1093/nar/gkx983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
G-quadruplexes (G4) within oncogene promoters are considered to be promising anticancer targets. However, often they undergo complex structural rearrangements that preclude a precise description of the optimal target. Moreover, even when solved structures are available, they refer to the thermodynamically stable forms but little or no information is supplied about their complex multistep folding pathway. To shed light on this issue, we systematically followed the kinetic behavior of a G-rich sequence located within the c-KIT proximal promoter (kit2) in the presence of monovalent cations K+ and Na+. A very short-lived intermediate was observed to start the G4 folding process in both salt conditions. Subsequently, the two pathways diverge to produce distinct thermodynamically stable species (parallel and antiparallel G-quadruplex in K+ and Na+, respectively). Remarkably, in K+-containing solution a branched pathway is required to drive the wild type sequence to distribute between a monomeric and dimeric G-quadruplex. Our approach has allowed us to identify transient forms whose relative abundance is regulated by the environment; some of them were characterized by a half-life within the timescale of physiological DNA processing events and thus may represent possible unexpected targets for ligands recognition.
Collapse
Affiliation(s)
- Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
47
|
Holmstrom ED, Nesbitt DJ. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annu Rev Phys Chem 2017; 67:441-65. [PMID: 27215819 DOI: 10.1146/annurev-physchem-040215-112544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| |
Collapse
|
48
|
Hou XM, Fu YB, Wu WQ, Wang L, Teng FY, Xie P, Wang PY, Xi XG. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res 2017; 45:11401-11412. [PMID: 28977514 PMCID: PMC5737514 DOI: 10.1093/nar/gkx766] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
G-quadruplex (G4) can be formed by G-rich DNA sequences that are widely distributed throughout the human genome. Although G-triplex and G-hairpin have been proposed as G4 folding intermediates, their formation still requires further investigation by experiments. Here, we employed single-molecule FRET to characterize the folding dynamics of G4 from human telomeric sequence. First, we observed four states during G4 folding initially assigned to be anti-parallel G4, G-triplex, G-hairpin and unfolded ssDNA. Then we constructed putative intra-strand G-triplex, G-hairpin structures and confirmed their existences in both NaCl and KCl. Further studies revealed those structures are going through dynamic transitions between different states and show relatively weak dependence on cations, unlike G4. Based on those results and molecular dynamics simulations, we proposed a multi-pathway folding mechanism for human telomeric G4. The present work may shed new light on our current understanding about the existence and stability of G4 intermediate states.
Collapse
Affiliation(s)
- Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi-Ben Fu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Xie
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
49
|
Wang S, Lu S, Zhao J, Huang J, Yang X. Real-Time Study of the Interaction between G-Rich DNA Oligonucleotides and Lead Ion on DNA Tetrahedron-Functionalized Sensing Platform by Dual Polarization Interferometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41568-41576. [PMID: 29099169 DOI: 10.1021/acsami.7b13477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
G-quadruplex plays roles in numerous physiological and pathological processes of organisms. Due to the unique properties of G-quadruplex (e.g., forming G4/hemin complexes with catalytic activity and electron acceptability, binding with metal ions, proteins, fluorescent ligands, and so on), it has been widely applied in biosensing. But the formation process of G-quadruplex is not yet fully understood. Here, a DNA tetrahedron platform with higher reproducibility, regenerative ability, and time-saving building process was coupled with dual polarization interferometry technique for the real-time and label-free investigation of the specific interaction process of guanine-rich singled-stranded DNA (G-rich ssDNA) and Pb2+. The oriented immobilization of probes greatly decreased the spatial hindrance effect and improved the accessibility of the probes to the Pb2+ ions. Through real-time monitoring of the whole formation process of the G-quadruplex, we speculated that the probes on the tetrahedron platform initially stood on the sensing surface with a random coil conformation, then the G-rich ssDNA preliminarily formed unstable G-quartets by H-bonding and cation binding, subsequently forming a completely folded and stable quadruplex structure through relatively slow strand rearrangements. On the basis of these studies, we also developed a novel sensing platform for the specific and sensitive determination of Pb2+ and its chelating agent ethylenediaminetetraacetic acid. This study not only provides a proof-of-concept for conformational dynamics of G-quadruplex-related drugs and pathogenes, but also enriches the biosensor tools by combining nanomaterial with interfaces technique.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Changchun, Jilin 130022, China
| |
Collapse
|
50
|
Debnath M, Ghosh S, Chauhan A, Paul R, Bhattacharyya K, Dash J. Preferential targeting of i-motifs and G-quadruplexes by small molecules. Chem Sci 2017; 8:7448-7456. [PMID: 29163897 PMCID: PMC5674183 DOI: 10.1039/c7sc02693e] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
i-Motifs and G-quadruplexes are dynamic nucleic acid secondary structures, which are believed to play key roles in gene expression. We herein report two peptidomimetic ligands (PBP1 and PBP2) that selectively target i-motifs and G-quadruplexes over double-stranded DNA. These peptidomimetics, regioisomeric with respect to the position of triazole/prolinamide motifs, have been synthesized using a modular method involving Cu(i)-catalyzed azide and alkyne cycloaddition. The para-isomer, PBP1 exhibits high selectivity for i-motifs while the meta-isomer PBP2 binds selectively to G-quadruplex structures. Interestingly, these ligands have the ability to induce G-quadruplex or i-motif structures from the unstructured single-stranded DNA conformations, as observed using single molecule Förster resonance energy transfer (smFRET) studies. The quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase assays indicate that PBP1 upregulates and PBP2 downregulates BCL-2 gene expression in cancer cells.
Collapse
Affiliation(s)
- Manish Debnath
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Shirsendu Ghosh
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India
| | - Ajay Chauhan
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Rakesh Paul
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Kankan Bhattacharyya
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India
| | - Jyotirmayee Dash
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| |
Collapse
|