1
|
Wan Y, Tata S, Seemann O, Levine EY, Smartsev S, Kroupp E, Malka V. Femtosecond electron microscopy of relativistic electron bunches. LIGHT, SCIENCE & APPLICATIONS 2023; 12:116. [PMID: 37164977 PMCID: PMC10172298 DOI: 10.1038/s41377-023-01142-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/12/2023]
Abstract
The development of plasma-based accelerators has enabled the generation of very high brightness electron bunches of femtosecond duration, micrometer size and ultralow emittance, crucial for emerging applications including ultrafast detection in material science, laboratory-scale free-electron lasers and compact colliders for high-energy physics. The precise characterization of the initial bunch parameters is critical to the ability to manipulate the beam properties for downstream applications. Proper diagnostic of such ultra-short and high charge density laser-plasma accelerated bunches, however, remains very challenging. Here we address this challenge with a novel technique we name as femtosecond ultrarelativistic electron microscopy, which utilizes an electron bunch from another laser-plasma accelerator as a probe. In contrast to conventional microscopy of using very low-energy electrons, the femtosecond duration and high electron energy of such a probe beam enable it to capture the ultra-intense space-charge fields of the investigated bunch and to reconstruct the charge distribution with very high spatiotemporal resolution, all in a single shot. In the experiment presented here we have used this technique to study the shape of a laser-plasma accelerated electron beam, its asymmetry due to the drive laser polarization, and its beam evolution as it exits the plasma. We anticipate that this method will significantly advance the understanding of complex beam-plasma dynamics and will also provide a powerful new tool for real-time optimization of plasma accelerators.
Collapse
Affiliation(s)
- Yang Wan
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Sheroy Tata
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Omri Seemann
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eitan Y Levine
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Slava Smartsev
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eyal Kroupp
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Victor Malka
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
2
|
Lu Y, Zhang GB, Zhao J, Hu YT, Zhang H, Li DA, Li QN, Cao Y, Wu YB, Yin Y, Shao FQ, Yu TP. Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses. OPTICS EXPRESS 2021; 29:8926-8940. [PMID: 33820333 DOI: 10.1364/oe.419761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Electrons can be accelerated to GeV energies with high collimation via laser wakefield acceleration in the bubble regime and emit bright betatron radiation in a table-top size. However, the radiation brightness is usually limited to the third-generation synchrotron radiation facilities operating at similar photon energies. Using a two-stage plasma configuration, we propose a novel scheme for generating betatronlike radiation with an extremely high brilliance. In this scheme, the relativistic electrons inside the bubble injected from the first stage can catch up with the frequency-downshifted laser pulse formed in the second stage. The laser red shift originates from the phase modulation, together with the group velocity dispersion, which enables more energy to be transfered from the laser pulse to γ-photons, giving rise to ultra-brilliant betatronlike radiation. Multi-dimensional particle-in-cell simulations indicate that the radiated γ-photons have the cut-off energy of GeV and a peak brilliance of 1026 photons s-1 mm-2 mrad-2 per 0.1%BW at 1 MeV, which may have diverse applications in various fields.
Collapse
|
3
|
Gao X, Shim B. Self-focusing and self-compression of intense pulses via ionization-induced spatiotemporal reshaping. OPTICS LETTERS 2020; 45:6434-6437. [PMID: 33258830 DOI: 10.1364/ol.405575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Ionization is a fundamental process in intense laser-matter interactions and is known to cause plasma defocusing and intensity clamping. Here, we investigate theoretically the propagation dynamics of an intense laser pulse in a helium gas jet in the ionization saturation regime, and we find that the pulse undergoes self-focusing and self-compression through ionization-induced reshaping, resulting in a manyfold increase in laser intensity. This unconventional behavior is associated with the spatiotemporal frequency variation mediated by ionization and spatiotempral coupling. Our results illustrate a new regime of pulse propagation and open up an optics-less approach for raising laser intensity.
Collapse
|
4
|
Nie Z, Pai CH, Zhang J, Ning X, Hua J, He Y, Wu Y, Su Q, Liu S, Ma Y, Cheng Z, Lu W, Chu HH, Wang J, Zhang C, Mori WB, Joshi C. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses. Nat Commun 2020; 11:2787. [PMID: 32493931 PMCID: PMC7271200 DOI: 10.1038/s41467-020-16541-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Availability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons. The longest wavelength photons slip backwards relative to the evolving laser pulse to form a single-cycle pulse within the nearly evacuated wake cavity. This process is called photon deceleration. Here, we demonstrate this scheme for generating high-power (~100 GW), near single-cycle, wavelength tunable (3–20 µm), infrared pulses using an 810 nm drive laser by tuning the density profile of the plasma. We also demonstrate that these pulses can be used to in-situ probe the transient and nonlinear wakes themselves. Plasma can act as strong nonlinear refractive index medium that can be exploited to downshift the frequency of a laser pulse. Here, the authors show the generation of single-cycle tunable infrared pulses using strong density gradients associated with laser-produced wakes in plasmas.
Collapse
Affiliation(s)
- Zan Nie
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.,University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chih-Hao Pai
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| | - Jie Zhang
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Xiaonan Ning
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Jianfei Hua
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| | - Yunxiao He
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yipeng Wu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Qianqian Su
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Shuang Liu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yue Ma
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhi Cheng
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Wei Lu
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China. .,State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
| | - Hsu-Hsin Chu
- Department of Physics, National Central University, Jhongli, 32001, Taiwan.,Center for High Energy and High Field Physics, National Central University, Jhongli, 32001, Taiwan
| | - Jyhpyng Wang
- Department of Physics, National Central University, Jhongli, 32001, Taiwan. .,Center for High Energy and High Field Physics, National Central University, Jhongli, 32001, Taiwan. .,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Chaojie Zhang
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Warren B Mori
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chan Joshi
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Zhu XL, Weng SM, Chen M, Sheng ZM, Zhang J. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas. LIGHT, SCIENCE & APPLICATIONS 2020; 9:46. [PMID: 32218917 PMCID: PMC7083853 DOI: 10.1038/s41377-020-0282-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Ultrashort intense optical pulses in the mid-infrared (mid-IR) region are very important for broad applications ranging from super-resolution spectroscopy to attosecond X-ray pulse generation and particle acceleration. However, currently, it is still difficult to produce few-cycle mid-IR pulses of relativistic intensities using standard optical techniques. Here, we propose and numerically demonstrate a novel scheme to produce these mid-IR pulses based on laser-driven plasma optical modulation. In this scheme, a plasma wake is first excited by an intense drive laser pulse in an underdense plasma, and a signal laser pulse initially at the same wavelength (1 micron) as that of the drive laser is subsequently injected into the plasma wake. The signal pulse is converted to a relativistic multi-millijoule near-single-cycle mid-IR pulse with a central wavelength of ~5 microns via frequency-downshifting, where the energy conversion efficiency is as high as approximately 30% when the drive and signal laser pulses are both at a few tens of millijoules at the beginning. Our scheme can be realized with terawatt-class kHz laser systems, which may bring new opportunities in high-field physics and ultrafast science.
Collapse
Affiliation(s)
- Xing-Long Zhu
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, 200240 Shanghai, China
- SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG UK
| | - Su-Ming Weng
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Min Chen
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zheng-Ming Sheng
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, 200240 Shanghai, China
- SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG UK
- Cockcroft Institute, Sci-Tech Daresbury, Cheshire, WA4 4AD UK
- Tsung-Dao Lee Institute, 200240 Shanghai, China
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, 200240 Shanghai, China
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
6
|
Thiele I, Siminos E, Fülöp T. Electron Beam Driven Generation of Frequency-Tunable Isolated Relativistic Subcycle Pulses. PHYSICAL REVIEW LETTERS 2019; 122:104803. [PMID: 30932636 DOI: 10.1103/physrevlett.122.104803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/30/2018] [Indexed: 06/09/2023]
Abstract
We propose a novel scheme for frequency-tunable subcycle electromagnetic pulse generation. To this end a pump electron beam is injected into an electromagnetic seed pulse as the latter is reflected by a mirror. The electron beam is shown to be able to amplify the field of the seed pulse while upshifting its central frequency and reducing its number of cycles. We demonstrate the amplification by means of 1D and 2D particle-in-cell simulations. In order to explain and optimize the process, a model based on fluid theory is proposed. We estimate that using currently available electron beams and terahertz pulse sources, our scheme is able to produce millijoule-strong midinfrared subcycle pulses.
Collapse
Affiliation(s)
- I Thiele
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - E Siminos
- Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - T Fülöp
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
7
|
Beaurepaire B, Guénot D, Vernier A, Böhle F, Perrier M, Jullien A, Lopez-Martens R, Lifschitz A, Faure J. Limitations in ionization-induced compression of femtosecond laser pulses due to spatio-temporal couplings. OPTICS EXPRESS 2016; 24:9693-9705. [PMID: 27137583 DOI: 10.1364/oe.24.009693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It was recently proposed that ionization-induced self-compression could be used as an effective method to further compress femtosecond laser pulses propagating freely in a gas jet [He et al., Phys. Rev. Lett. 113, 263904 2014]. Here, we address the question of the homogeneity of the self-compression process and show experimentally that homogeneous self-compression down to 12fs can be obtained by finding the appropriate focusing geometry for the laser pulse. Simulations are used to reproduce the experimental results and give insight into the self-compression process and its limitations. Simulations suggest that the ionization process induces spatio-temporal couplings which lengthen the pulse duration at focus, possibly making this method ineffective for increasing the laser peak intensity.
Collapse
|
8
|
He ZH, Nees JA, Hou B, Krushelnick K, Thomas AGR. Ionization-induced self-compression of tightly focused femtosecond laser pulses. PHYSICAL REVIEW LETTERS 2014; 113:263904. [PMID: 25615338 DOI: 10.1103/physrevlett.113.263904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 06/04/2023]
Abstract
As lasers become progressively higher in power, optical damage thresholds will become a limiting factor. Using the nonlinear optics of plasma may be a way to circumvent these limits. Here, we present a new self-compression mechanism for high-power, femtosecond laser pulses based on geometrical focusing and three dimensional spatiotemporal reshaping in an ionizing plasma. By propagating tightly focused, 10-mJ femtosecond laser pulses through a 100-μm gas jet, the interplay between ionization gradients, focusing, and diffraction of the light pulse leads to stable and uniform self-compression of the pulse, while maintaining a high-energy throughput and excellent refocusability. Self-compression down to 16 fs from an original 36-fs pulse is measured using second-harmonic-generation frequency-resolved optical gating. Using this mechanism, we are able to maintain a high transmission (>88%) such that the pulse peak power is doubled. Three-dimensional numerical simulations are performed to support our interpretation of the experimental observations.
Collapse
Affiliation(s)
- Z-H He
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J A Nees
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - B Hou
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - K Krushelnick
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A G R Thomas
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Sharma A, Misra S, Mishra SK, Kourakis I. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:063111. [PMID: 23848793 DOI: 10.1103/physreve.87.063111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.
Collapse
Affiliation(s)
- A Sharma
- Institute of Physics, University of Pecs, 7621 Pecs, Hungary.
| | | | | | | |
Collapse
|
10
|
Wen M, Jin LL, Wang HY, Wang Z, Shen BF, Lu YR, Chen JE, Yan XQ. Determination of carrier-envelope phase of relativistic few-cycle laser pulses by Thomson backscattering spectroscopy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:035401. [PMID: 22587142 DOI: 10.1103/physreve.85.035401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Indexed: 05/31/2023]
Abstract
A method is proposed to determine the carrier-envelope phase (CEP) of a relativistic few-cycle laser pulse via the frequency of the Thomson backscattering (TBS) light. We theoretically investigate the generation of a flying mirror when a few-cycle drive pulse with relativistic intensity interacts with a target combined with a thin and a thick foil. The frequency of the TBS light generated from the flying mirror shows a sensitive dependence on the CEP of the drive pulse. The obtained results are verified by one-dimensional particle-in-cell simulations and are explained by an analytical model.
Collapse
Affiliation(s)
- M Wen
- State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology (CAPT), Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mackenroth F, Di Piazza A, Keitel CH. Determining the carrier-envelope phase of intense few-cycle laser pulses. PHYSICAL REVIEW LETTERS 2010; 105:063903. [PMID: 20867981 DOI: 10.1103/physrevlett.105.063903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Indexed: 05/29/2023]
Abstract
The electromagnetic radiation emitted by an ultrarelativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense (I>10(20) W/cm(2)), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly the laser field, include relativistic and quantum effects and are in principle applicable to presently available and future foreseen ultrastrong laser facilities.
Collapse
Affiliation(s)
- F Mackenroth
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Sharma A, Kourakis I, Shukla PK. Spatiotemporal evolution of high-power relativistic laser pulses in electron-positron-ion plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:016402. [PMID: 20866742 DOI: 10.1103/physreve.82.016402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Indexed: 05/29/2023]
Abstract
The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.
Collapse
Affiliation(s)
- A Sharma
- Centre for Plasma Physics, School of Mathematics & Physics, Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
13
|
Faure J, Glinec Y, Santos JJ, Ewald F, Rousseau JP, Kiselev S, Pukhov A, Hosokai T, Malka V. Observation of laser-pulse shortening in nonlinear plasma waves. PHYSICAL REVIEW LETTERS 2005; 95:205003. [PMID: 16384066 DOI: 10.1103/physrevlett.95.205003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Indexed: 05/05/2023]
Abstract
We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38 +/- 2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations.
Collapse
Affiliation(s)
- J Faure
- Laboratoire d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tsung FS, Narang R, Mori WB, Joshi C, Fonseca RA, Silva LO. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. PHYSICAL REVIEW LETTERS 2004; 93:185002. [PMID: 15525172 DOI: 10.1103/physrevlett.93.185002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 05/24/2023]
Abstract
The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced.
Collapse
Affiliation(s)
- F S Tsung
- Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|